Making the most ef?cient use of computer systems has rapidly become a leading topic of interest for the computer industry and its customers alike. However, the focus of these discussions is often on single, isolated, and speci?c architectural and technological improvements for power reduction and conservation, while ignoring the fact that power ef?ciency as a ratio of performance to power consumption is equally in?uenced by performance improvements and architectural power red- tion. Furthermore, ef?ciency can be in?uenced on all levels of today’s system hi- archies from single cores all the way to distributed Grid environments. To improve execution and power ef?ciency requires progress in such diverse ?elds as program optimization, optimization of program scheduling, and power reduction of idling system components for all levels of the system hierarchy. Improving computer system ef?ciency requires improving system performance and reducing system power consumption. To research and reach reasonable conc- sions about system performance we need to not only understand the architectures of our computer systems and the available array of code transformations for p- formance optimizations, but we also need to be able to express this understanding in performance models good enough to guide decisions about code optimizations for speci?c systems. This understanding is necessary on all levels of the system hierarchy from single cores to nodes to full high performance computing (HPC) systems, and eventually to Grid environments with multiple systems and resources.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Ralf Gruber won the Cray Gigaflop Performance Award in 1989 with world’s fastest parallel program running at 1.7 GFlop/s sustained. He was responsible for the Swiss-Tx cluster project, a co-operation between EPFL, Compaq, and Supercomputing Systems. Since 6 years he teaches the doctoral school course on "High Performance Computing Methods".
Vincent Keller received his Master degree in Computer Science from the University of Geneva (Switzerland) in 2004, and his PhD degree in 2008 from the Swiss Federal Institute of Technology (EPFL) in the HPCN and HPC Grids fields. Since 2009, Dr. Vincent Keller holds a full-time researcher position at University of Bonn in Germany. His research interests are in HPC applications analysis, Grid and cluster computing and energy efficiency of large computing ecosystems.
The authors present methods to reduce computer energy consumption by a better use of resources and by maximizing the efficiencies of applications. The processor frequency is adjusted to the needs of the running job, leading to a power drop in servers and PCs, and increasing battery life time of laptops. It is shown how computer resources can be optimally adapted to application needs, reducing job run time. The job-related data is stored and reused to help computer managers to stop old machines and to choose new ones better adapted to the application community.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,03 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Guideline how to improve existing applications in a company with the goal to reduce computer energy consumptionComputers and applications are parameterized, the relevant quantities monitored, and models are presented to predict execution times bas. Codice articolo 11800826
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Making the most ef cient use of computer systems has rapidly become a leading topic of interest for the computer industry and its customers alike. However, the focus of these discussions is often on single, isolated, and speci c architectural and technological improvements for power reduction and conservation, while ignoring the fact that power ef ciency as a ratio of performance to power consumption is equally in uenced by performance improvements and architectural power red- tion. Furthermore, ef ciency can be in uenced on all levels of today's system hi- archies from single cores all the way to distributed Grid environments. To improve execution and power ef ciency requires progress in such diverse elds as program optimization, optimization of program scheduling, and power reduction of idling system components for all levels of the system hierarchy. Improving computer system ef ciency requires improving system performance and reducing system power consumption. To research and reach reasonable conc- sions about system performance we need to not only understand the architectures of our computer systems and the available array of code transformations for p- formance optimizations, but we also need to be able to express this understanding in performance models good enough to guide decisions about code optimizations for speci c systems. This understanding is necessary on all levels of the system hierarchy from single cores to nodes to full high performance computing (HPC) systems, and eventually to Grid environments with multiple systems and resources. 240 pp. Englisch. Codice articolo 9783642426360
Quantità: 2 disponibili
Da: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo è un articolo print on demand. Codice articolo 7286ac05210c0d436d4497dfad7de791
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Making the most ef cient use of computer systems has rapidly become a leading topic of interest for the computer industry and its customers alike. However, the focus of these discussions is often on single, isolated, and speci c architectural and technological improvements for power reduction and conservation, while ignoring the fact that power ef ciency as a ratio of performance to power consumption is equally in uenced by performance improvements and architectural power red- tion. Furthermore, ef ciency can be in uenced on all levels of today's system hi- archies from single cores all the way to distributed Grid environments. To improve execution and power ef ciency requires progress in such diverse elds as program optimization, optimization of program scheduling, and power reduction of idling system components for all levels of the system hierarchy. Improving computer system ef ciency requires improving system performance and reducing system power consumption. To research and reach reasonable conc- sions about system performance we need to not only understand the architectures of our computer systems and the available array of code transformations for p- formance optimizations, but we also need to be able to express this understanding in performance models good enough to guide decisions about code optimizations for speci c systems. This understanding is necessary on all levels of the system hierarchy from single cores to nodes to full high performance computing (HPC) systems, and eventually to Grid environments with multiple systems and resources. Codice articolo 9783642426360
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Making the most ef cient use of computer systems has rapidly become a leading topic of interest for the computer industry and its customers alike. However, the focus of these discussions is often on single, isolated, and speci c architectural and technological improvements for power reduction and conservation, while ignoring the fact that power ef ciency as a ratio of performance to power consumption is equally in uenced by performance improvements and architectural power red- tion. Furthermore, ef ciency can be in uenced on all levels of today¿s system hi- archies from single cores all the way to distributed Grid environments. To improve execution and power ef ciency requires progress in such diverse elds as program optimization, optimization of program scheduling, and power reduction of idling system components for all levels of the system hierarchy. Improving computer system ef ciency requires improving system performance and reducing system power consumption. To research and reach reasonable conc- sions about system performance we need to not only understand the architectures of our computer systems and the available array of code transformations for p- formance optimizations, but we also need to be able to express this understanding in performance models good enough to guide decisions about code optimizations for speci c systems. This understanding is necessary on all levels of the system hierarchy from single cores to nodes to full high performance computing (HPC) systems, and eventually to Grid environments with multiple systems and resources.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 240 pp. Englisch. Codice articolo 9783642426360
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783642426360_new
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26357405055
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 356134560
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18357405045
Quantità: 4 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9783642426360
Quantità: 10 disponibili