Articoli correlati a Learning to Rank for Information Retrieval

Learning to Rank for Information Retrieval - Brossura

 
9783642441240: Learning to Rank for Information Retrieval

Sinossi

Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people.

The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called “learning to rank”.

Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank that cannot be simply categorized into the three major approaches – these include relational ranking, query-dependent ranking, transfer ranking, and semisupervised ranking. His presentation is completed by several examples that apply these technologies to solve real information retrieval problems, and by theoretical discussions on guarantees for ranking performance.

This book is written for researchers and graduate students in both information retrieval and machine learning. They will find here the only comprehensive description of the state of the art in a field that has driven the recent advances in search engine development.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

<p>Tie-Yan Liu is a lead researcher at Microsoft Research Asia. He leads a team working on learning to rank for information retrieval, and graph-based machine learning.   So far, he has more than 70 quality papers published in referred conferences and journals, including SIGIR(9), WWW(3), ICML(3), KDD, NIPS, ACM MM, IEEE TKDE, SIGKDD Explorations, etc.   He has about 40 filed US / international patents or pending applications on learning to rank, general Web search, and multimedia signal processing.   He is the co-author of the Best Student Paper for SIGIR 2008, and the Most Cited Paper for the Journal of Visual Communication and Image Representation (2004~2006). He is an Area Chair of SIGIR 2009, a Senior Program Committee member of SIGIR 2008, and Program Committee members for many other international conferences, such as WWW, ICML, ACL, and ICIP. He is the co-chair of the SIGIR workshop on learning to rank for information retrieval (LR4IR) in 2007 and 2008. He has been on the Editorial Board of the Information Retrieval Journal (IRJ) since 2008, and is the guest editor of the special issue on learning to rank of IRJ.   He has given tutorials on learning to rank at WWW 2008 and SIGIR 2008. Prior to joining Microsoft, he obtained his Ph.D. from Tsinghua University, where his research efforts were devoted to video content analysis.</p>

Dalla quarta di copertina

Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people.

The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called “learning to rank”.

Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank that cannot be simply categorized into the three major approaches – these include relational ranking, query-dependent ranking, transfer ranking, and semisupervised ranking. His presentation is completed by several examples that apply these technologies to solve real information retrieval problems, and by theoretical discussions on guarantees for ranking performance.

This book is written for researchers and graduate students in both information retrieval and machine learning. They will find here the only comprehensive description of the state of the art in a field that has driven the recent advances in search engine development.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Like New
Visualizza questo articolo

EUR 28,63 per la spedizione da Regno Unito a U.S.A.

Destinazione, tempi e costi

EUR 5,50 per la spedizione da Italia a U.S.A.

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783642142666: Learning to Rank for Information Retrieval

Edizione in evidenza

ISBN 10:  3642142664 ISBN 13:  9783642142666
Casa editrice: Springer-Nature New York Inc, 2011
Rilegato

Risultati della ricerca per Learning to Rank for Information Retrieval

Foto dell'editore

Liu, Tie-Yan
Editore: Springer, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuovo Brossura
Print on Demand

Da: Brook Bookstore On Demand, Napoli, NA, Italia

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: new. Questo è un articolo print on demand. Codice articolo f6cc93cbf644ba240012d10d499d509f

Contatta il venditore

Compra nuovo

EUR 118,26
Convertire valuta
Spese di spedizione: EUR 5,50
Da: Italia a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Liu, Tie-Yan
Editore: Springer, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783642441240_new

Contatta il venditore

Compra nuovo

EUR 134,63
Convertire valuta
Spese di spedizione: EUR 13,72
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Liu, Tie-Yan
Editore: Springer, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar3113020228034

Contatta il venditore

Compra nuovo

EUR 148,91
Convertire valuta
Spese di spedizione: EUR 3,43
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tie-Yan Liu
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people.The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called 'learning to rank'.Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank that cannot be simply categorized into the three major approaches - these include relational ranking, query-dependent ranking, transfer ranking, and semisupervised ranking. His presentation is completed by several examples that apply these technologies to solve real information retrieval problems, and by theoretical discussions on guarantees for ranking performance.This book is written for researchers and graduate students in both information retrieval and machine learning. They will find here the only comprehensive description of the state of the art in a field that has driven the recent advances in search engine development. 304 pp. Englisch. Codice articolo 9783642441240

Contatta il venditore

Compra nuovo

EUR 149,79
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tie-Yan Liu
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Only comprehensive overview of a key innovative technology for search engine developmentWritten by one of the leading authorities in this fieldCombines scientific theoretical soundness with broad development and application experiences. Codice articolo 11801056

Contatta il venditore

Compra nuovo

EUR 127,40
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Liu, Tie-Yan
Editore: Springer, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9783642441240

Contatta il venditore

Compra nuovo

EUR 183,31
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Liu, Tie-Yan
Editore: Springer, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26357318260

Contatta il venditore

Compra nuovo

EUR 191,85
Convertire valuta
Spese di spedizione: EUR 3,43
In U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tie-Yan Liu
Editore: Springer-Verlag GmbH, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuovo Taschenbuch

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Learning to Rank for Information Retrieval | Tie-Yan Liu | Taschenbuch | xvii | Englisch | 2014 | Springer-Verlag GmbH | EAN 9783642441240 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Codice articolo 104914320

Contatta il venditore

Compra nuovo

EUR 131,95
Convertire valuta
Spese di spedizione: EUR 70,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tie-Yan Liu
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people.The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called ¿learning to rank¿.Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank that cannot be simply categorized into the three major approaches ¿ these include relational ranking, query-dependent ranking, transfer ranking, and semisupervised ranking. His presentation is completed by several examples that apply these technologies to solve real information retrieval problems, and by theoretical discussions on guarantees for ranking performance.This book is written for researchers and graduate students in both information retrieval and machine learning. They will find here the only comprehensive description of the state of the art in a field that has driven the recent advances in search engine development.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 304 pp. Englisch. Codice articolo 9783642441240

Contatta il venditore

Compra nuovo

EUR 149,79
Convertire valuta
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Liu, Tie-Yan
Editore: Springer, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo 356221355

Contatta il venditore

Compra nuovo

EUR 202,51
Convertire valuta
Spese di spedizione: EUR 7,44
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Vedi altre 3 copie di questo libro

Vedi tutti i risultati per questo libro