:So eine Illrbeit witb eigentIid) nie rertig, man muli iie fur fertig erfHiren, wenn man nad) 8eit nnb Umftiinben bas moglid)fte get an qat. (@oetqe,
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
A. Linear Ultrametric Analysis and Valuation Theory.- 1. Norms and Valuations.- 1.1. Semi-normed and normed groups.- 1.1.1. Ultrametric functions.- 1.1.2. Filtrations.- 1.1.3. Semi-normed and normed groups. Ultrametric topology.- 1.1.4. Distance.- 1.1.5. Strictly closed subgroups.- 1.1.6. Quotient groups.- 1.1.7. Completions.- 1.1.8. Convergent series.- 1.1.9. Strict homomorphisms and completions.- 1.2. Semi-normed and normed rings.- 1.2.1. Semi-normed and normed rings.- 1.2.2. Power-multiplicative and multiplicative elements.- 1.2.3. The category 𝔑 and the functor A ? A~.- 1.2.4. Topologically nilpotent elements and complete normed rings.- 1.2.5. Power-bounded elements.- 1.3. Power-multiplicative semi-norms.- 1.3.1. Definition and elementary properties.- 1.3.2. Smoothing procedures for semi-norms.- 1.3.3. Standard examples of norms and semi-norms.- 1.4. Strictly convergent power series.- 1.4.1. Definition and structure of A?X?.- 1.4.2. Structure of A?X??.- 1.4.3. Bounded homomorphisms of A?X?.- 1.5. Non-Archimedean valuations.- 1.5.1. Valued rings.- 1.5.2. Examples.- 1.5.3. The Gauss-Lemma.- 1.5.4. Spectral value of monic polynomials.- 1.5.5. Formal power series in countably many indeterminates.- 1.6. Discrete valuation rings.- 1.6.1. Definition. Elementary properties.- 1.6.2. The example of F. K. Schmidt.- 1.7. Bald and discrete B-rings.- 1.7.1. B-rings.- 1.7.2. Bald rings.- 1.8. Quasi-Noetherian B-rings.- 1.8.1. Definition and characterization.- 1.8.2. Construction of quasi-Noetherian rings.- 2. Normed modules and normed vector spaces.- 2.1. Normed and faithfully normed modules.- 2.1.1. Definition.- 2.1.2. Submodules and quotient modules.- 2.1.3. Modules of fractions. Completions.- 2.1.4. Ramification index.- 2.1.5. Direct sum. Bounded and restricted direct product.- 2.1.6. The module L(L, M) of bounded A-linear maps.- 2.1.7. Complete tensor products.- 2.1.8. Continuity and boundedness.- 2.1.9. Density condition.- 2.1.10. The functor M ? M~. Residue degree.- 2.2. Examples of normed and faithfully normed A-modules.- 2.2.1. The module An.- 2.2.2. The modules A(I)A(?)c(A) and b(A).- 2.2.3. Structure of L(cI(A), M).- 2.2.4. The ring A [Y1, Y2, ...] of formal power series.- 2.2.5. b-separable modules.- 2.2.6. The functor M ? T(M).- 2.3. Weakly cartesian spaces.- 2.3.1. Elementary properties of normed spaces.- 2.3.2. Weakly cartesian spaces.- 2.3.3. Properties of weakly cartesian spaces.- 2.3.4. Weakly cartesian spaces and tame modules.- 2.4. Cartesian spaces.- 2.4.1. Cartesian spaces of finite dimension.- 2.4.2. Finite-dimensional cartesian spaces and strictly closed subspaces.- 2.4.3. Cartesian spaces of arbitrary dimension.- 2.4.4. Normed vector spaces over a spherically complete field.- 2.5. Strictly cartesian spaces.- 2.5.1. Finite-dimensional strictly cartesian spaces.- 2.5.2. Strictly cartesian spaces of arbitrary dimension.- 2.6. Weakly cartesian spaces of countable dimension.- 2.6.1. Weakly cartesian bases.- 2.6.2. Existence of weakly cartesian bases. Fundamental theorem.- 2.7. Normed vector spaces of countable type. The Lifting Theorem.- 2.7.1. Spaces of countable type.- 2.7.2. Schauder bases. Orthogonality and orthonormality.- 2.7.3. The Lifting Theorem.- 2.7.4. Proof of the Lifting Theorem.- 2.7.5. Applications.- 2.8. Banach spaces.- 2.8.1. Definition. Fundamental theorem.- 2.8.2. Banach spaces of countable type.- 3. Extensions of norms and valuations.- 3.1. Normed and faithfully normed algebras.- 3.1.1. A-algebra norms.- 3.1.2. Spectral values and power-multiplicative norms.- 3.1.3. Residue degree and ramification index.- 3.1.4. Dedekind’s Lemma and a Finiteness Lemma.- 3.1.5. Power-multiplicative and faithful A-algebra norms.- 3.2. Algebraic field extensions. Spectral norm and valuations.- 3.2.1. Spectral norm on algebraic field extensions.- 3.2.2. Spectral norm on reduced integral K-algebras.- 3.2.3. Spectral norm and field polynomials.- 3.2.4. Spectral norm and valuations.- 3.3. Classical valuation theory.- 3.3.1. Spectral norm and completions.- 3.3.2. Construction of inequivalent valuations.- 3.3.3. Construction of power-multiplicative algebra norms.- 3.3.4. Hensel’s Lemma.- 3.4. Properties of the spectral valuation.- 3.4.1. Continuity of roots.- 3.4.2. Krasner’s Lemma.- 3.4.3. Example, p-adic numbers.- 3.5. Weakly stable fields.- 3.5.1. Weakly cartesian fields.- 3.5.2. Weakly stable fields.- 3.5.3. Criterion for weak stability.- 3.5.4. Weak stability and Japaneseness.- 3.6. Stable fields.- 3.6.1. Definition.- 3.6.2. Criteria for stability.- 3.7. Banach algebras.- 3.7.1. Definition and examples.- 3.7.2. Finiteness and completeness of modules over a Banach algebra.- 3.7.3. The category 𝔐A.- 3.7.4. Finite homomorphisms.- 3.7.5. Continuity of homomorphisms.- 3.8. Function algebras.- 3.8.1. The supremum semi-norm on k-algebras.- 3.8.2. The supremum semi-norm on k-Banach algebras.- 3.8.3. Banach function algebras.- 4 (Appendix to Part A). Tame modules and Japanese rings.- 4.1. Tame modules.- 4.2. A Theorem of Dedekind.- 4.3. Japanese rings. First criterion for Japaneseness.- 4.4. Tameness and Japaneseness.- B. Affinoid algebras.- 5. Strictly convergent power series.- 5.1. Definition and elementary properties of Tn and T?n.- 5.1.1. Description of Tn.- 5.1.2. The Gauss norm is a valuation and T?n is a polynomial ring over k?.- 5.1.3. Going up and down between Tn and T?n.- 5.1.4. Tn as a function algebra.- 5.2. Weierstrass-Rückert theory for Tn.- 5.2.1. Weierstrass Division Theorem.- 5.2.2. Weierstrass Preparation Theorem.- 5.2.3. Weierstrass polynomials and Weierstrass Finiteness Theorem.- 5.2.4. Generation of distinguished power series.- 5.2.5. Rückert’s theory.- 5.2.6. Applications of Rückert’s theory for Tn.- 5.2.7. Finite Tn-modules.- 5.3. Stability of Q(Tn).- 5.3.1. Weak stability.- 5.3.2. The Stability Theorem. Reductions.- 5.3.3. Stability of k(X) if |k|is divisible.- 5.3.4. Completion of the proof for arbitrary |k|.- 6. Affinoid algebras and Finiteness Theorems.- 6.1. Elementary properties of affinoid algebras.- 6.1.1. The category 𝔄 of k-affinoid algebras.- 6.1.2. Noether normalization.- 6.1.3. Continuity of homomorphisms.- 6.1.4. Examples. Generalized rings of fractions.- 6.1.5. Further examples. Convergent power series on general polydiscs.- 6.2. The spectrum of a k-affinoid algebra and the supremum semi-norm.- 6.2.1. The supremum semi-norm.- 6.2.2. Integral homomorphisms.- 6.2.3. Power-bounded and topologically nilpotent elements.- 6.2.4. Reduced k-affinoid algebras are Banach function algebras.- 6.3. The reduction functor A ? A?.- 6.3.1. Monomorphisms, isometries and epimorphisms.- 6.3.2. Finiteness of homomorphisms.- 6.3.3. Applications to group operations.- 6.3.4. Finiteness of the reduction functor A ? A?.- 6.3.5. Summary.- 6.4. The functor A ? Å.- 6.4.1. Finiteness Theorems.- 6.4.2. Epimorphisms and isomorphisms.- 6.4.3. Residue norm and supremum norm. Distinguished k-affinoid algebras and epimorphisms.- C. Rigid analytic geometry.- 7. Local theory of affinoid varieties.- 7.1. Affinoid varieties.- 7.1.1. Max Tn and the unit ball Bn(ka).- 7.1.2. Affinoid sets. Hilbert’s Nullstellensatz.- 7.1.3. Closed subspaces of Max Tn.- 7.1.4. Affinoid maps. The category of affinoid varieties.- 7.1.5. The reduction functor.- 7.2. Affinoid subdomains.- 7.2.1. The canonical topology on Sp A.- 7.2.2. The universal property defining affinoid subdomains.- 7.2.3. Examples of open affinoid subdomains.- 7.2.4. Transitivity properties.- 7.2.5. The Openness Theorem.- 7.2.6. Affinoid subdomains and reduction.- 7.3. Immersions of affinoid varieties.- 7.3.1. Ideal-adic topologies.- 7.3.2. Germs of affinoid functions.- 7.3.3. Locally closed immersions.- 7.3.4. Runge immersions.- 7.3.5. Main theorem for locally closed immersions.- 8. ?ech cohomology of affinoid varieties.- 8.1. Cech cohomology with values in a presheaf.- 8.1.1. Cohomology of complexes.- 8.1.2. Cohomology of double complexes.- 8.1.3. ?ech cohomology.- 8.1.4. A Comparison Theorem for Cech cohomology.- 8.2. Tate’s Acyclicity Theorem.- 8.2.1. Statement of the theorem.- 8.2.2. Affinoid coverings.- 8.2.3. Proof of the Acyclicity Theorem for Laurent coverings.- 9. Rigid analytic varieties.- 9.1. Grothendieck topologies.- 9.1.1. 6r-topological spaces.- 9.1.2. Enhancing procedures for G-topologies.- 9.1.3. Pasting of (G-topological spaces.- 9.1.4. G-topologies on affinoid varieties.- 9.2. Sheaf theory.- 9.2.1. Presheaves and sheaves on G-topological spaces.- 9.2.2. Sheafification of presheaves.- 9.2.3. Extension of sheaves.- 9.3. Analytic varieties. Definitions and constructions.- 9.3.1. Locally G-ringed spaces and analytic varieties.- 9.3.2. Pasting of analytic varieties.- 9.3.3. Pasting of analytic maps.- 9.3.4. Some basic examples.- 9.3.5. Fibre products.- 9.3.6. Extension of the ground field.- 9.4. Coherent modules.- 9.4.1. 𝒪-modules.- 9.4.2. Associated modules.- 9.4.3. It-coherent modules.- 9.4.4. Finite morphisms.- 9.5. Closed analytic subvarieties.- 9.5.1. Coherent ideals. The nilradical.- 9.5.2. Analytic subsets.- 9.5.3. Closed immersions of analytic varieties.- 9.6. Separated and proper morphisms.- 9.6.1. Separated morphisms.- 9.6.2. Proper morphisms.- 9.6.3. The Direct Image Theorem and the Theorem on Formal Functions.- 9.7. An application to elliptic curves.- 9.7.1. Families of annuli.- 9.7.2. Affinoid subdomains of the unit disc.- 9.7.3. Tate’s elliptic curves.- Glossary of Notations.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. :So eine Illrbeit witb eigentIid) nie rertig, man muli iie fur fertig erfHiren, wenn man nad) 8eit nnb Umftiinben bas moglid)fte get an qat. (atoetqe, : So eine Illrbeit witb eigentIid) nie rertig, man muli iie fur fertig erfHiren, wenn man nad) 8eit nnb Umftiinben bas moglid)fte get an qat. (atoetqe Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783642522314
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783642522314_new
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A. Linear Ultrametric Analysis and Valuation Theory.- 1. Norms and Valuations.- 1.1. Semi-normed and normed groups.- 1.1.1. Ultrametric functions.- 1.1.2. Filtrations.- 1.1.3. Semi-normed and normed groups. Ultrametric topology.- 1.1.4. Distance.- 1.1.5. St. Codice articolo 5063595
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 452 pp. Englisch. Codice articolo 9783642522314
Quantità: 2 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Non-Archimedean Analysis | A Systematic Approach to Rigid Analytic Geometry | S. Bosch (u. a.) | Taschenbuch | xii | Englisch | 2012 | Springer-Verlag GmbH | EAN 9783642522314 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Codice articolo 105719221
Quantità: 5 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 452. Codice articolo 2698177766
Quantità: 4 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 452 pp. Englisch. Codice articolo 9783642522314
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering. Codice articolo 9783642522314
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 452 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 95268153
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 452. Codice articolo 1898177772
Quantità: 4 disponibili