Introduction to Shape Optimization: Shape Sensitivity Analysis: 16 - Brossura

Sokolowski, Jan; Zolesio, Jean-Paul

 
9783642634710: Introduction to Shape Optimization: Shape Sensitivity Analysis: 16

Sinossi

Shape Optimization is a classical field of the calculus of variations, optimal control theory and structural optimization. In this book the authors discuss the shape calculus introduced by J. Hadamard and extend it to a broad class of free boundary value problems. The approach is functional analytic throughout and will serve as an excellent basis for the development of numerical algorithms for the solution of shape optimization problems.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1 Introduction to shape optimization.- 1.1. Preface.- 2 Preliminaries and the material derivative method.- 2.1. Domains in ?N of class Ck.- Surface measures on ?.- 2.3. Functional spaces.- 2.4. Linear elliptic boundary value problems.- 2.5. Shape functionals.- 2.6. Shape functionals for problems governed by linear elliptic boundary value problems.- 2.6.1. Shape functionals for transmission problems.- 2.6.2. Approximation of homogenuous Dirichlet problems.- 2.7. Convergence of domains.- 2.8. Transformations Tt of domains.- 2.9. The speed method.- 2.10. Admissible speed vector fields Vk(D).- 2.11. Eulerian derivatives of shape functionals.- 2.12. Non-differentiable shape functionals.- 2.13. Properties of Tt transformations.- 2.14. Differentiability of transported functions.- 2.15. Derivatives for t > 0.- 2.16. Derivatives of domain integrals.- 2.17. Change of variables in boundary integrals.- 2.18. Derivatives of boundary integrals.- 2.19. The tangential divergence of the field V on ?.- 2.20. Tangential gradients and Laplace―Beltrami operators on ?.- 2.21. Variational problems on ?.- 2.22. The transport of differential operators.- 2.23. Integration by parts on ?.- 2.24. The transport of Laplace―Beltrami operators.- 2.25. Material derivatives.- 2.26. Material derivatives on ?.- 2.27. The material derivative of a solution to the Laplace equation with Dirichlet boundary conditions.- 2.28. Strong material derivatives for Dirichlet problems.- 2.29. The material derivative of a solution to the Laplace equation with Neumann boundary conditions.- 2.30. Shape derivatives.- 2.31. Derivatives of domain integrals (II).- 2.32. Shape derivatives on ?.- 2.33. Derivatives of boundary integrals.- 3 Shape derivatives for linear problems.- 3.1. The shape derivative for the Dirichlet boundary value problem.- 3.2. The shape derivative for the Neumann boundary value problem.- 3.3. Necessary optimality conditions.- 3.4. Parabolic equations.- 3.4.1 Neumann boundary conditions.- 3.4.2 Dirichlet boundary conditions.- 3.5. Shape sensitivity in elasticity.- 3.6. Shape sensitivity analysis of the smallest eigenvalue.- 3.7. Shape sensitivity analysis of the Kirchhoff plate.- 3.8. Shape derivatives of boundary integrals: the non-smooth case in ?2.- 3.9. Shape sensitivity analysis of boundary value problems with singularities.- 3.10. Hyperbolic initial boundary value problems.- 4 Shape sensitivity analysis of variational inequalities.- 4.1. Differential stability of the metric projection in Hilbert spaces.- 4.2. Sensitivity analysis of variational inequalities in Hilbert spaces.- 4.3. The obstacle problem in H1 (?).- 4.3.1. Differentiability of the Newtonian capacity.- 4.3.2. The shape controlability of the free boundary.- 4.4. The Signorini problem.- 4.5. Variational inequalities of the second kind.- 4.6. Sensitivity analysis of the Signorini problem in elasticity.- 4.6.1. Differential stability of solutions to variational inequalities in Hilbert spaces.- 4.6.2. Shape sensitivity analysis.- 4.7. The Signorini problem with given friction.- 4.7.1. Shape sensitivity analysis.- 4.8. Elasto―Plastic torsion problems.- 4.9. Elasto―Visco―Plastic problems.- References.

Product Description

Rare Book

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9783540541776: Introduction to Shape Optimization: Shape Sensitivity Analysis: v. 16

Edizione in evidenza

ISBN 10:  3540541772 ISBN 13:  9783540541776
Casa editrice: Springer-Verlag Berlin and Heide..., 1992
Rilegato