Data analysis and inference have traditionally been research areas of statistics. However, the need to electronically store, manipulate and analyze large-scale, high-dimensional data sets requires new methods and tools, new types of databases, new efficient algorithms, new data structures, etc. - in effect new computational methods.
This monograph presents new intelligent data management methods and tools, such as the support vector machine, and new results from the field of inference, in particular of causal modeling. In 11 well-structured chapters, leading experts map out the major tendencies and future directions of intelligent data analysis. The book will become a valuable source of reference for researchers exploring the interdisciplinary area between statistics and computer science as well as for professionals applying advanced data analysis methods in industry and commerce. Students and lecturers will find the book useful as an introduction to the area.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
I. Causal Models.- 1. Statistics, Causality, and Graphs.- 1.1 A Century of Denial.- 1.2 Researchers in Search of a Language.- 1.3 Graphs as a Mathematical Language.- 1.4 The Challenge.- References.- 2. Causal Conjecture.- 2.1 Introduction.- 2.2 Variables in a Probability Tree.- 2.3 Causal Uncorrelatedness.- 2.4 Three Positive Causal Relations.- 2.5 Linear Sign.- 2.6 Causal Uncorrelatedness Again.- 2.7 Scored Sign.- 2.8 Tracking.- References.- 3. Who Needs Counterfactuals?.- 3.1 Introduction.- 3.1.1 Decision-Theoretic Framework.- 3.1.2 Unresponsiveness and Insensitivity.- 3.2 Counterfactuals.- 3.3 Problems of Causal Inference.- 3.3.1 Causes of Effects.- 3.3.2 Effects of Causes.- 3.4 The Counterfactual Approach.- 3.4.1 The Counterfactual Setting.- 3.4.2 Counterfactual Assumptions.- 3.5 Homogeneous Population.- 3.5.1 Experiment and Inference.- 3.6 Decision-Analytic Approach.- 3.7 Sheep and Goats.- 3.7.1 ACE.- 3.7.2 Neyman and Fisher.- 3.7.3 Bioequivalence.- 3.8 Causes of Effects.- 3.8.1 A Different Approach?.- 3.9 Conclusion.- References.- 4. Causality: Independence and Determinism.- 4.1 Introduction.- 4.2 Conclusion.- References.- II. Intelligent Data Management.- 5. Intelligent Data Analysis and Deep Understanding.- 5.1 Introduction.- 5.2 The Question: The Strategy.- 5.3 Diminishing Returns.- 5.4 Conclusion.- References.- 6. Learning Algorithms in High Dimensional Spaces.- 6.1 Introduction.- 6.2 SVM for Pattern Recognition.- 6.2.1 Dual Representation of Pattern Recognition.- 6.3 SVM for Regression Estimation.- 6.3.1 Dual Representation of Regression Estimation.- 6.3.2 SVM Applet and Software.- 6.4 Ridge Regression and Least Squares Methods in Dual Variables.- 6.5 Transduction.- 6.6 Conclusion.- References.- 7. Learning Linear Causal Models by MML Sampling.- 7.1 Introduction.- 7.2 Minimum Message Length Principle.- 7.3 The Model Space.- 7.4 The Message Format.- 7.5 Equivalence Sets.- 7.5.1 Small Effects.- 7.5.2 Partial Order Equivalence.- 7.5.3 Structural Equivalence.- 7.5.4 Explanation Length.- 7.6 Finding Good Models.- 7.7 Sampling Control.- 7.8 By-products.- 7.9 Prior Constraints.- 7.10 Test Results.- 7.11 Remarks on Equivalence.- 7.11.1 Small Effect Equivalence.- 7.11.2 Equivalence and Causality.- 7.12 Conclusion.- References.- 8. Game Theory Approach to Multicommodity Flow Network Vulnerability Analysis.- References.- 9. On the Accuracy of Stochastic Complexity Approximations.- 9.1 Introduction.- 9.2 Stochastic Complexity and Its Applications.- 9.3 Approximating the Stochastic Complexity in the Incomplete Data Case.- 9.4 Empirical Results.- 9.4.1 The Problem.- 9.4.2 The Experimental Setting.- 9.4.3 The Algorithms.- 9.4.4 Results.- 9.5 Conclusion.- References.- 10. AI Modelling for Data Quality Control Xiaohui Liu.- 10.1 Introduction.- 10.2 Statistical Approaches to Outliers.- 10.3 Outlier Detection and Analysis.- 10.4 Visual Field Test.- 10.5 Outlier Detection.- 10.5.1 Self-Organising Maps (SOM).- 10.5.2 Applications of SOM.- 10.6 Outlier Analysis by Modelling ‘Real Measurements’.- 10.7 Outlier Analysis by Modelling Noisy Data.- 10.7.1 Noise Model I: Noise Definition.- 10.7.2 Noise Model II: Construction.- 10.7.3 Noise Elimination.- 10.8 Concluding Remarks.- References.- 11. New Directions in Text Categorization.- 11.1 Introduction.- 11.2 Machine Learning for Text Classification.- 11.3 Radial Basis Functions and the Bard.- 11.4 An Evolutionary Algorithm for Text Classification.- 11.5 Text Classification by Vocabulary Richness.- 11.6 Text Classification with Frequent Function Words.- 11.7 Do Authors Have Semantic Signatures?.- 11.8 Syntax with Style.- 11.9 Intermezzo.- 11.10 Some Methods of Textual Feature-Finding.- 11.10.1 Progressive Pairwise Chunking.- 11.10.2 Monte Carlo Feature Finding.- 11.10.3 How Long Is a Piece of Substring?.- 11.10.4 Comparative Testing.- 11.11 Which Methods Work Best? - A Benchmarking Study.- 11.12 Discussion.- 11.12.1 In Praise of Semi-Crude Bayesianism.- 11.12.2 What's So Special About Linguistic Data?.- References.
Book by None
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020232184
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9783642636820
Quantità: 10 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The need to electronically store, manipulate and analyze large-scale, high-dimensional data sets requires new computational methods. This book presents new intelligent data management methods and tools, including new results from the field of inference. Leading experts also map out future directions of intelligent data analysis. This book will be a valuable reference for researchers exploring the interdisciplinary area between statistics and computer science as well as for professionals applying advanced data analysis methods in industry. 200 pp. Englisch. Codice articolo 9783642636820
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Coherent survey on new intelligent data analysis methods with an emphasis on causal inferenceBased on courses held by UNICOMThe need to electronically store, manipulate and analyze large-scale, high-dimensional data sets requires new computational m. Codice articolo 5065964
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Data analysis and inference have traditionally been research areas of statistics. However, the need to electronically store, manipulate and analyze large-scale, high-dimensional data sets requires new methods and tools, new types of databases, new efficient algorithms, new data structures, etc. - in effect new computational methods.This monograph presents new intelligent data management methods and tools, such as the support vector machine, and new results from the field of inference, in particular of causal modeling. In 11 well-structured chapters, leading experts map out the major tendencies and future directions of intelligent data analysis. The book will become a valuable source of reference for researchers exploring the interdisciplinary area between statistics and computer science as well as for professionals applying advanced data analysis methods in industry and commerce. Students and lecturers will find the book useful as an introduction to the area.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 200 pp. Englisch. Codice articolo 9783642636820
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The need to electronically store, manipulate and analyze large-scale, high-dimensional data sets requires new computational methods. This book presents new intelligent data management methods and tools, including new results from the field of inference. Leading experts also map out future directions of intelligent data analysis. This book will be a valuable reference for researchers exploring the interdisciplinary area between statistics and computer science as well as for professionals applying advanced data analysis methods in industry. Codice articolo 9783642636820
Quantità: 1 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Causal Models and Intelligent Data Management | Alex Gammerman | Taschenbuch | x | Englisch | 2012 | Springer-Verlag GmbH | EAN 9783642636820 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Codice articolo 105985808
Quantità: 5 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA80036426368296
Quantità: 1 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Codice articolo 23667403/1
Quantità: 1 disponibili