Articoli correlati a Nonlinear Approximation Theory: 7

Nonlinear Approximation Theory: 7 - Brossura

 
9783642648830: Nonlinear Approximation Theory: 7

Sinossi

The first investigations of nonlinear approximation problems were made by P.L. Chebyshev in the last century, and the entire theory of uniform approxima­ tion is strongly connected with his name. By making use of his ideas, the theories of best uniform approximation by rational functions and by polynomials were developed over the years in an almost unified framework. The difference between linear and rational approximation and its implications first became apparent in the 1960's. At roughly the same time other approaches to nonlinear approximation were also developed. The use of new tools, such as nonlinear functional analysis and topological methods, showed that linearization is not sufficient for a complete treatment of nonlinear families. In particular, the application of global analysis and the consideration of flows on the family of approximating functions intro­ duced ideas which were previously unknown in approximation theory. These were and still are important in many branches of analysis. On the other hand, methods developed for nonlinear approximation prob­ lems can often be successfully applied to problems which belong to or arise from linear approximation. An important example is the solution of moment problems via rational approximation. Best quadrature formulae or the search for best linear spaces often leads to the consideration of spline functions with free nodes. The most famous problem of this kind, namely best interpolation by poly­ nomials, is treated in the appendix of this book.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

I. Preliminaries.- § 1. Some Notation, Definitions and Basic Facts.- A. Functional Analytic Notation and Terminology.- B. The Approximation Problem. Definitions and Basic Facts.- C. An Invariance Principle.- D. Divided Differences.- § 2. A Review of the Characterization of Nearest Points in Linear and Convex Sets.- A. Characterization via the Hahn-Banach Theorem and the Kolmogorov Criterion.- B. Special Function Spaces.- § 3. Linear and Convex Chebyshev Approximation.- A. Haar’s Uniqueness Theorem. Alternants.- B. Haar Cones.- C. Alternation Theorem for Haar Cones.- §4. L1-Approximation and Gaussian Quadrature Formulas.- A. The Hobby-Rice Theorem.- B. Existence of Generalized Gaussian Quadrature Formulas.- C. Extremal Properties.- II. Nonlinear Approximation: The Functional Analytic Approach.- §1. Approximative Properties of Arbitrary Sets.- A. Existence.- B. Uniqueness from the Generic Viewpoint.- §2. Solar Properties of Sets.- A. Suns. The Kolmogorov Criterion.- B. The Convexity of Suns.- C. Suns and Moons in C(X).- § 3. Properties of Chebyshev Sets.- A. Approximative Compactness.- B. Convexity and Solarity of Chebyshev Sets.- C. An Alternative Proof.- III. Methods of Local Analysis.- §1. Critical Points.- A. Tangent Cones and Critical Points.- B. Parametrizations and C1-Manifolds.- C. Local Strong Uniqueness.- §2. Nonlinear Approximation in Hilbert Spaces.- A. Nonlinear Approximation in Smooth Banach Spaces.- B. A Classification of Critical Points.- C. Continuity.- D. Functions with Many Local Best Approximations.- § 3. Varisolvency.- A. Varisolvent Families.- B. Characterization and Uniqueness of Best Approximations.- C. Regular and Singular Points.- D. The Density Property.- §4. Nonlinear Chebyshev Approximation: The Differentiable Case.- A. The Local Kolmogorov Criterion.- B. The Local Haar Condition.- C. Haar Manifolds.- D. The Local Uniqueness Theorem for C1-Manifolds.- §5. The Gauss-Newton Method.- A. General Convergence Theory.- B. Numerical Stabilization.- IV. Methods of Global Analysis.- §1. Preliminaries. Basic Ideas.- A. Concepts for the Classification of Critical Points.- B. An Example with Many Critical Points.- C. Local Homeomorphisms.- §2. The Uniqueness Theorem for Haar Manifolds.- A. The Deformation Theorem.- B. The Mountain Pass Theorem.- C. Perturbation Theory.- §3. An Example with One Nonlinear Parameter.- A. The Manifold $$E_n^c\backslash E_{n - 1}^c$$.- B. Reduction to One Parameter.- C. Improvement of the Bounds.- V. Rational Approximation.- §1. Existence of Best Rational Approximations.- A. The Existence Problem in C(X).- B. Rational Lp-Approximation. Degeneracy.- §2. Chebyshev Approximation by Rational Functions.- A. Uniqueness and Characterization of Best Approximations.- B. Normal Points.- C. The Lethargy Theorem and the Lip 1 Conjecture.- §3. Rational Interpolation.- A. The Cauchy Interpolation Problem.- B. Rational Functions with Real Poles.- C. Comparison Theorems.- §4. Padé Approximation and Moment Problems.- A. Padé Approximation.- B. The Stieltjes and the Hamburger Moment Problem.- §5. The Degree of Rational Approximation.- A. Approximation of ex on [?1, +1].- B. Approximation of e?x on [0, ?] by Inverses of Polynomials.- C. Rational Approximation of e?x on [0,?).- D. Rational Approximation of ?x.- E. Rational Approximation of ?x?.- §6. The Computation of Best Rational Approximations.- A. The Differential Correction Algorithm.- B. The Remes Algorithm.- VI. Approximation by Exponential Sums.- §1. Basic Facts.- A. Proper and Extended Exponential Sums.- B. The Descartes’ Rule of Signs.- §2. Existence of Best Approximations.- A. A Bound for the Derivatives of Exponential Sums.- B. Existence.- §3. Some Facts on Interpolation and Approximation.- A. Interpolation by Exponential Sums.- B. The Speed of Approximation of Completely Monotone Functions.- VII. Chebyshev Approximation by ?-Polynomials.- §1. Descartes Families.- A. ?-Polynomials.- B. Sign-Regular and Totally Positive Kernels.- C. The Generalized Descartes’ Rule.- D. Further Generalizations.- E. Examples.- §2. Approximation by Proper ?-Polynomials.- A. Varisolvency.- B. Sign Distribution.- C. Positive Sums.- §3. Approximation by Extended ?-Polynomials: Elementary Theory.- A. Non-Uniqueness, Characterization of Best Approximations.- B. ?Polynomials of Order 2.- §4. The Haar Manifold Gn\Gn?1.- A. Simple Parametrizations.- B. The Differentiable Structure.- C. Families with Bounded Spectrum.- §5. Local Best Approximations.- A. Characterization of Local Best Approximations.- B. The Generic Viewpoint.- §6. Maximal Components.- A. Introduction of Maximal Components.- B. The Boundary of Maximal Components.- §7. The Number of Local Best Approximations.- A. The Construction of Local Best Approximations.- B. Completeness of the Standard Construction.- VIII. Approximation by Spline Functions with Free Nodes.- §1. Spline Functions with Fixed Nodes.- A. Chebyshevian Spline Functions.- B. Zeros of Spline Functions.- C. Characterization of Best Uniform Approximations.- §2. Chebyshev Approximation by Spline Functions with Free Nodes.- A. Existence..- B. Continuity and Differentiability Properties.- C. Characterization of Best Approximations.- §3. Monosplines of Least L?-Norm.- A. The Family $$S_{n,k}^ +$$.- B. Monosplines.- C. The Fundamental Theorem of Algebra for Monosplines.- D. Monosplines with Multiple Nodes of Least L?-Norm.- E. Perfect Splines and Generalized Monosplines.- §4. Monosplines of Least L1-Norm.- A. Examples of Nonuniqueness.- B. Duality.- C. The Improvement Operator.- D. Proof of Lemma 4.3.- §5. Monosplines of Least Lp-Norm.- A. The Rodriguez Function for the Lp-Norms.- B. The Degree of the Mapping ?.- C. The Uniqueness Theorem.- Appendix. The Conjectures of Bernstein and Erdös.

Product Description

Book by Braess Dietrich

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer
  • Data di pubblicazione2011
  • ISBN 10 3642648835
  • ISBN 13 9783642648830
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine308

Compra usato

Condizioni: come nuovo
Like New
Visualizza questo articolo

EUR 29,41 per la spedizione da Regno Unito a U.S.A.

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

Risultati della ricerca per Nonlinear Approximation Theory: 7

Foto dell'editore

Braess, Dietrich
Editore: Springer, 2011
ISBN 10: 3642648835 ISBN 13: 9783642648830
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar3113020233157

Contatta il venditore

Compra nuovo

EUR 124,73
Convertire valuta
Spese di spedizione: EUR 3,52
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Braess, Dietrich
Editore: Springer, 2011
ISBN 10: 3642648835 ISBN 13: 9783642648830
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783642648830_new

Contatta il venditore

Compra nuovo

EUR 130,90
Convertire valuta
Spese di spedizione: EUR 14,09
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dietrich Braess
ISBN 10: 3642648835 ISBN 13: 9783642648830
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The first investigations of nonlinear approximation problems were made by P.L. Chebyshev in the last century, and the entire theory of uniform approxima tion is strongly connected with his name. By making use of his ideas, the theories of best uniform approximation by rational functions and by polynomials were developed over the years in an almost unified framework. The difference between linear and rational approximation and its implications first became apparent in the 1960's. At roughly the same time other approaches to nonlinear approximation were also developed. The use of new tools, such as nonlinear functional analysis and topological methods, showed that linearization is not sufficient for a complete treatment of nonlinear families. In particular, the application of global analysis and the consideration of flows on the family of approximating functions intro duced ideas which were previously unknown in approximation theory. These were and still are important in many branchesof analysis. On the other hand, methods developed for nonlinear approximation prob lems can often be successfully applied to problems which belong to or arise from linear approximation. An important example is the solution of moment problems via rational approximation. Best quadrature formulae or the search for best linear spaces often leads to the consideration of spline functions with free nodes. The most famous problem of this kind, namely best interpolation by poly nomials, is treated in the appendix of this book. 308 pp. Englisch. Codice articolo 9783642648830

Contatta il venditore

Compra nuovo

EUR 128,39
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dietrich Braess
ISBN 10: 3642648835 ISBN 13: 9783642648830
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The first investigations of nonlinear approximation problems were made by P.L. Chebyshev in the last century, and the entire theory of uniform approxima tion is strongly connected with his name. By making use of his ideas, the theories of best uniform approximation by rational functions and by polynomials were developed over the years in an almost unified framework. The difference between linear and rational approximation and its implications first became apparent in the 1960's. At roughly the same time other approaches to nonlinear approximation were also developed. The use of new tools, such as nonlinear functional analysis and topological methods, showed that linearization is not sufficient for a complete treatment of nonlinear families. In particular, the application of global analysis and the consideration of flows on the family of approximating functions intro duced ideas which were previously unknown in approximation theory. These were and still are important in many branchesof analysis. On the other hand, methods developed for nonlinear approximation prob lems can often be successfully applied to problems which belong to or arise from linear approximation. An important example is the solution of moment problems via rational approximation. Best quadrature formulae or the search for best linear spaces often leads to the consideration of spline functions with free nodes. The most famous problem of this kind, namely best interpolation by poly nomials, is treated in the appendix of this book. Codice articolo 9783642648830

Contatta il venditore

Compra nuovo

EUR 128,39
Convertire valuta
Spese di spedizione: EUR 30,34
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dietrich Braess
ISBN 10: 3642648835 ISBN 13: 9783642648830
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 5067089

Contatta il venditore

Compra nuovo

EUR 109,83
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Dietrich Braess
Editore: Springer, 2011
ISBN 10: 3642648835 ISBN 13: 9783642648830
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 308. Codice articolo 2658580914

Contatta il venditore

Compra nuovo

EUR 185,74
Convertire valuta
Spese di spedizione: EUR 3,52
In U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Braess, Dietrich
Editore: Springer, 2011
ISBN 10: 3642648835 ISBN 13: 9783642648830
Antico o usato Paperback

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA80036426488356

Contatta il venditore

Compra usato

EUR 169,65
Convertire valuta
Spese di spedizione: EUR 29,41
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Braess Dietrich
Editore: Springer, 2011
ISBN 10: 3642648835 ISBN 13: 9783642648830
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand pp. 308 38 Figures, 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 51011693

Contatta il venditore

Compra nuovo

EUR 193,76
Convertire valuta
Spese di spedizione: EUR 7,65
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Braess Dietrich
Editore: Springer, 2011
ISBN 10: 3642648835 ISBN 13: 9783642648830
Nuovo Brossura
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND pp. 308. Codice articolo 1858580920

Contatta il venditore

Compra nuovo

EUR 195,36
Convertire valuta
Spese di spedizione: EUR 9,95
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello