The Skyrme Model: Fundamentals Methods Applications - Brossura

Makhankov, Vladimir G. G.; Rybakov, Yurii P.; Sanyuk, Valerii I.

 
9783642846724: The Skyrme Model: Fundamentals Methods Applications

Sinossi

The Skyrme Model is the model of hadron matter proposed by the British physicist T.H.R. Skyrme in 1961. It is now regarded the simplest model for an adequate description of hadron structure and interaction. Since no summarizing reference book has been written up to now, researchers in high energy, nuclear and particle physics will find here the first thorough description of this model.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

I Fundamentals.- 1. The Evolution of Skyrme’s Approach.- 1.1 The “Mesonic Fluid” Model.- 1.2 The Chiral Modification.- 1.3 The Two-Dimensional Simplified (sine-Gordon) Model.- 1.3.1 The Idea of Topological Charge.- 1.3.2 The Abelian Bosonization or Fermi-Bose Correspondence.- 1.4 The Baryon Model ― Topological Skyrmions.- 1.4.1 The (3+1)-dimensional “Angular” Variables.- 1.4.2 The Topological Charge in the (3+1) Model.- 1.4.3. The Skyrme Model Dynamics.- 1.5 Skyrme’s Results and Conjectures.- 2. Elements of Field Theory with Topological Charges.- 2.1 Geometric Viewpoint on the Classical Field Theory.- 2.1.1 The Configuration Space.- 2.1.2 Homotopy as a Formalization of Dynamical Evolution.- 2.2 The Topological Classification of Solutions.- 2.2.1 Homotopy Classes of the sine-Gordon Model.- 2.2.2 The Fundamental and Higher Homotopy Groups.- 2.3 Isham’s Construction of Topological Charges.- 2.3.1 Cohomology ― Homotopy Relationship in Brief.- 2.3.2 Derivation of Topological Charge in the Skyrme Model.- 2.4 Guiding Principles in the Choice of Model Lagrangians.- 2.4.1 Chirally Invariant Lagrangians.- 3. Topological Stability.- 3.1 Some General Remarks.- 3.2 The Hobart-Derrick Theorem.- 3.3 Soliton Stability and the Second Variation Structure of the Lyapunov Functional.- 3.3.1 The Lyapunov Stability of Solitons.- 3.3.2 The Generalized Hobart-Derrick Theorem.- 3.3.3 The Q-stability of Solitons.- 3.4 The Topological Stability of Skyrmions.- II Methods for the Study of Skyrmions.- 4. The Principle of Symmetric Criticality.- 4.1 Some Auxiliary Information.- 4.2 The Symmetry Group of the Skyrme Energy Functional.- 4.3 The Coleman-Palais Theorem.- 4.4 The Structure of Invariant Fields (Ansätze).- 5. Absolute Minimum of the Energy Functional.- 5.1 Method of Extending the Phase Space.- 5.2 The Spherical Rearrangement Method.- 5.3 Skyrmion as the Absolute Minimizer of the Energy.- 6. The Existence of Skyrmions.- 6.1 The Field Equations for Skyrmions.- 6.2 The Direct Method in the Calculus of Variations.- 6.3 An Outline of the Proof of the Skyrmion Existence.- 7. Multi-Baryon and Rotating Skyrmion States.- 7.1 The Problem of Bound States and Interaction Among Skyrmions.- 7.1.1 The Invariant Fields in Higher Homotopy Classes.- 7.2 Minima of the Energy Functional in Higher Homotopy Classes.- 7.3 The Rotating Skyrmion.- 8. Quantization of Skyrmions.- 8.1 Bogolubov’s Method of Collective Coordinates.- 8.2 Canonical Quantization of Skyrmions.- 8.3 The “Non-Rigid” Quantization of Skyrmions.- III Hadron Physics Applications.- 9. The Skyrme Model and QCD.- 9.1 Express Review of the QCD Present Status.- 9.2 1/N-Expansion.- 9.3 Effective Meson Theory from QCD.- 9.3.1 The Low-energy QCD Attributes.- 9.3.2 The Topological Charge as the Baryon Number.- 9.3.3 Effective Chiral Lagrangians from QCD.- 10. Skyrmion as a Fermion.- 10.1 The Finkelstein’s Double-Valued Functionals.- 10.2 The Charge-Monopole Multi-valued Action.- 10.3 The Wess-Zumino Term and Witten’s Realization of Skyrme’s Suggestion.- 10.3.1 The Wess-Zumino Term in Effective Chiral Lagrangian.- 10.3.2 Spin and Statistics of Skyrmions.- 11. Quantized SU(3) Skyrmions and Their Interactions.- 11.1 The SU(Z) Generalized Lagrangian in Terms of Collective Coordinates.- 11.1.1 The SU(3) Skyrme “Collective” Lagrangian.- 11.1.2 The Wess-Zumino Term for Collective Coordinates.- 11.1.3 The Symmetry Breaking Term.- 11.2 Quantization in the Presence of the Wess-Zumino Term.- 11.2.1 Canonical Quantization.- 11.2.2 Symmetries, Constraint and Spectrum.- 11.2.3 Static Observables and Mass Formulae.- 11.3 Skyrmions’ Interactions: Nuclear Forces and Nuclear Matter.- 11.3.1 The Skyrmion-Skyrmion Interaction and Nuclear Forces.- 11.3.2 The Meson-Baryon Interaction.- 11.3.3 The Skyrme Model and Nuclear Matter.- Concluding Remarks.- IV Appendices.- A. Chiral Symmetry.- A.1 Algebraic Aspects of Chiral Symmetry.- A.2 Geometric Aspects of Chiral Symmetry.- B. A Concise Account of Algebraic Topology.- B.1 Smooth Manifolds.- B.2 Tangent Spaces, Vector Fields and Lie Algebras.- B.3 Differential Forms.- B.4 Integration on Manifolds and De Rham Co-Homologies.- B.5 Fundamental Groups, Homotopy Groups and Some Other Topological Invariants.- C. Methods of Reduction.- C.1 Reduction to Static Field Configurations.- C.2 Reduction to G-Invariant Fields.- C.3 Spherical Rearrangement Technique: An Illustration.- D. Proofs of Stability and Existence Theorems.- D.1 Proof of Generalized Hobart-Derrick Theorem.- D.2 Existence of the Axially-Symmetric Solutions.- D.3 Existence of a Nonsingular Matrix.- E. Finkelstein-Williams’ Spinor Structures.- References.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo