Bayesian Analysis of Failure Time Data Using P-Splines - Brossura

Libro 5 di 91: BestMasters

Kaeding, Matthias

 
9783658083922: Bayesian Analysis of Failure Time Data Using P-Splines

Sinossi

Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Matthias Kaeding obtained his Master of Science degree at the University of Bamberg in Survey Statistics.

Dalla quarta di copertina

Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model.

Contents

  • Relative Risk and Log-Location-Scale Family
  • Bayesian P-Splines
  • Discrete Time Models
  • Continuous Time Models

Target Groups

  • Researchers and students in the fields of statistics, engineering, and life sciences
  • Practitioners in the fields of reliability engineering and data analysis involved with lifetimes

The Author

Matthias Kaeding obtained his Master of Science degree at the University of Bamberg in Survey Statistics.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.