The use of Electroencephalography (EEG) in Brain Computer Interface (BCI) domain presents a challenging problem due to presence of spatial and temporal aspects inherent in the EEG data. Many studies either transform the data into a temporal or spatial problem for analysis. This approach results in loss of significant information since these methods fail to consider the correlation present within the spatial and temporal aspect of the EEG data. However, Spiking Neural Network (SNN) naturally takes into consideration the correlation present within the spatio-temporal data. Hence by applying the proposed SNN based novel methods on EEG, the thesis provide improved analytic on EEG data. This book introduces novel methods and architectures for spatio-temporal data modelling and classification using SNN. More specifically, SNN is used for analysis and classification of spatiotemporal EEG data.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Nuttapod graduated a M.Sc. in Computer Science from King Mongkut’s Institute of Technology,Thailand with outstanding thesis award. He completed a PhD in Computer and Information Science from Auckland University of Technology, New Zealand under the supervision of Prof. Nikola Kasabov and Assoc. Prof. Petia Georgieva.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 3,53 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020285716
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9783659430800
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9783659430800
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783659430800
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783659430800_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The use of Electroencephalography (EEG) in Brain Computer Interface (BCI) domain presents a challenging problem due to presence of spatial and temporal aspects inherent in the EEG data. Many studies either transform the data into a temporal or spatial problem for analysis. This approach results in loss of significant information since these methods fail to consider the correlation present within the spatial and temporal aspect of the EEG data. However, Spiking Neural Network (SNN) naturally takes into consideration the correlation present within the spatio-temporal data. Hence by applying the proposed SNN based novel methods on EEG, the thesis provide improved analytic on EEG data. This book introduces novel methods and architectures for spatio-temporal data modelling and classification using SNN. More specifically, SNN is used for analysis and classification of spatiotemporal EEG data. 256 pp. Englisch. Codice articolo 9783659430800
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The use of Electroencephalography (EEG) in Brain Computer Interface (BCI) domain presents a challenging problem due to presence of spatial and temporal aspects inherent in the EEG data. Many studies either transform the data into a temporal or spatial problem for analysis. This approach results in loss of significant information since these methods fail to consider the correlation present within the spatial and temporal aspect of the EEG data. However, Spiking Neural Network (SNN) naturally takes into consideration the correlation present within the spatio-temporal data. Hence by applying the proposed SNN based novel methods on EEG, the thesis provide improved analytic on EEG data. This book introduces novel methods and architectures for spatio-temporal data modelling and classification using SNN. More specifically, SNN is used for analysis and classification of spatiotemporal EEG data. Codice articolo 9783659430800
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Codice articolo 5155785
Quantità: Più di 20 disponibili