Data mining is the process of gathering, searching, and analyzing a large amount of raw data, as to discover patterns, relationships and behavior of data. There are large numbers of algorithms for classification of data mining. Single algorithm is not efficient for classification of data and recognize their pattern and behavior .There is a key term known as ensemble learning which means Combining two or more classifiers for efficient result. I have used the KDD’99 dataset for the experiment which have 41 features labeled either as normal or as an attack. In this book I have represented how graphical machine learning tool weka can be used for data mining and how ensemble learning can be implemented using weka.I have used three classifiers with the Bagging and Boosting ensemble learning approach which are complementary naïve bayes and two are rule based classifiers, part and jrip. My experiment shows that bagging improves the efficiency of the rule based classifiers as well as of naïve Bayes. However, the rule based classifiers become more efficient with bagging and boosting techniques.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Gaurav Mishra is born in India and has received His Bachelor’s degree in Computer Science & Engg.From Malout Institute of Management & Information Technology, Malout India. His areas of interest are Network Security, Java programming & Data Mining.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Codice articolo 5156480
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Data mining is the process of gathering, searching, and analyzing a large amount of raw data, as to discover patterns, relationships and behavior of data. There are large numbers of algorithms for classification of data mining. Single algorithm is not efficient for classification of data and recognize their pattern and behavior .There is a key term known as ensemble learning which means Combining two or more classifiers for efficient result. I have used the KDD'99 dataset for the experiment which have 41 features labeled either as normal or as an attack. In this book I have represented how graphical machine learning tool weka can be used for data mining and how ensemble learning can be implemented using weka.I have used three classifiers with the Bagging and Boosting ensemble learning approach which are complementary naïve bayes and two are rule based classifiers, part and jrip. My experiment shows that bagging improves the efficiency of the rule based classifiers as well as of naïve Bayes. However, the rule based classifiers become more efficient with bagging and boosting techniques. 52 pp. Englisch. Codice articolo 9783659442155
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Data mining is the process of gathering, searching, and analyzing a large amount of raw data, as to discover patterns, relationships and behavior of data. There are large numbers of algorithms for classification of data mining. Single algorithm is not efficient for classification of data and recognize their pattern and behavior .There is a key term known as ensemble learning which means Combining two or more classifiers for efficient result. I have used the KDD'99 dataset for the experiment which have 41 features labeled either as normal or as an attack. In this book I have represented how graphical machine learning tool weka can be used for data mining and how ensemble learning can be implemented using weka.I have used three classifiers with the Bagging and Boosting ensemble learning approach which are complementary naïve bayes and two are rule based classifiers, part and jrip. My experiment shows that bagging improves the efficiency of the rule based classifiers as well as of naïve Bayes. However, the rule based classifiers become more efficient with bagging and boosting techniques. Codice articolo 9783659442155
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Data mining is the process of gathering, searching, and analyzing a large amount of raw data, as to discover patterns, relationships and behavior of data. There are large numbers of algorithms for classification of data mining. Single algorithm is not efficient for classification of data and recognize their pattern and behavior .There is a key term known as ensemble learning which means Combining two or more classifiers for efficient result. I have used the KDD¿99 dataset for the experiment which have 41 features labeled either as normal or as an attack. In this book I have represented how graphical machine learning tool weka can be used for data mining and how ensemble learning can be implemented using weka.I have used three classifiers with the Bagging and Boosting ensemble learning approach which are complementary naïve bayes and two are rule based classifiers, part and jrip. My experiment shows that bagging improves the efficiency of the rule based classifiers as well as of naïve Bayes. However, the rule based classifiers become more efficient with bagging and boosting techniques.Books on Demand GmbH, Überseering 33, 22297 Hamburg 52 pp. Englisch. Codice articolo 9783659442155
Quantità: 2 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 52 pages. 8.66x5.91x0.12 inches. In Stock. Codice articolo __3659442151
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 52 pages. 8.66x5.91x0.12 inches. In Stock. Codice articolo 3659442151
Quantità: 1 disponibili