The superior properties of composite materials over conventional materials have been well acknowledged by the research community. In particular, Aluminum Metal Matrix Composites (Al-MMCs) are sought over other conventional engineering materials owing to their excellent mechanical properties and outstanding wear resistance. Al-MMCs are widely used in aerospace, marine and automotive industries for different applications. Wear is a complex phenomenon and the most important reason for the damage and consequent failure of machine parts. A lot of experiments have to be conducted in order to study the wear behavior resulting in wastage of both manpower and money. In several Artificial Intelligence (AI), an Artificial Neural Networks (ANN) help in reducing the cost of experiments when implemented with care and enough data in prediction of wear. Al-MMCs subjected to wear studies and with the obtained data, an ANN model was developed to predict the tribological properties of the Al6061 and Al7075 reinforced with SiC and Al2O3 MMCs. The predicted values of tribological properties of MMCs using a well trained ANN were found in good agreement with experimental values.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kumar G. B. VeereshDr. Veeresh Kumar G. B. is specialized in the field of Fabrication and Evaluation of Physical, Mechanical, and Tribological Characterization of Metal Matrix Composites with professional experience in disciplines of. Codice articolo 385767858
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The superior properties of composite materials over conventional materials have been well acknowledged by the research community. In particular, Aluminum Metal Matrix Composites (Al-MMCs) are sought over other conventional engineering materials owing to their excellent mechanical properties and outstanding wear resistance. Al-MMCs are widely used in aerospace, marine and automotive industries for different applications. Wear is a complex phenomenon and the most important reason for the damage and consequent failure of machine parts. A lot of experiments have to be conducted in order to study the wear behavior resulting in wastage of both manpower and money. In several Artificial Intelligence (AI), an Artificial Neural Networks (ANN) help in reducing the cost of experiments when implemented with care and enough data in prediction of wear. Al-MMCs subjected to wear studies and with the obtained data, an ANN model was developed to predict the tribological properties of the Al6061 and Al7075 reinforced with SiC and Al2O3 MMCs. The predicted values of tribological properties of MMCs using a well trained ANN were found in good agreement with experimental values. 184 pp. Englisch. Codice articolo 9783659577482
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The superior properties of composite materials over conventional materials have been well acknowledged by the research community. In particular, Aluminum Metal Matrix Composites (Al-MMCs) are sought over other conventional engineering materials owing to their excellent mechanical properties and outstanding wear resistance. Al-MMCs are widely used in aerospace, marine and automotive industries for different applications. Wear is a complex phenomenon and the most important reason for the damage and consequent failure of machine parts. A lot of experiments have to be conducted in order to study the wear behavior resulting in wastage of both manpower and money. In several Artificial Intelligence (AI), an Artificial Neural Networks (ANN) help in reducing the cost of experiments when implemented with care and enough data in prediction of wear. Al-MMCs subjected to wear studies and with the obtained data, an ANN model was developed to predict the tribological properties of the Al6061 and Al7075 reinforced with SiC and Al2O3 MMCs. The predicted values of tribological properties of MMCs using a well trained ANN were found in good agreement with experimental values. Codice articolo 9783659577482
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -The superior properties of composite materials over conventional materials have been well acknowledged by the research community. In particular, Aluminum Metal Matrix Composites (Al-MMCs) are sought over other conventional engineering materials owing to their excellent mechanical properties and outstanding wear resistance. Al-MMCs are widely used in aerospace, marine and automotive industries for different applications. Wear is a complex phenomenon and the most important reason for the damage and consequent failure of machine parts. A lot of experiments have to be conducted in order to study the wear behavior resulting in wastage of both manpower and money. In several Artificial Intelligence (AI), an Artificial Neural Networks (ANN) help in reducing the cost of experiments when implemented with care and enough data in prediction of wear. Al-MMCs subjected to wear studies and with the obtained data, an ANN model was developed to predict the tribological properties of the Al6061 and Al7075 reinforced with SiC and Al2O3 MMCs. The predicted values of tribological properties of MMCs using a well trained ANN were found in good agreement with experimental values.Books on Demand GmbH, Überseering 33, 22297 Hamburg 184 pp. Englisch. Codice articolo 9783659577482
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26400822812
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 395554243
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18400822806
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 184 pages. 8.66x5.91x0.42 inches. In Stock. Codice articolo 3659577480
Quantità: 1 disponibili