Cervical cancer, the second most common cancer globally, is highly curable if detected early. However, rural areas face high mortality rates due to poor resources and limited screening programs. Automated diagnosis can address these gaps by distinguishing abnormal Pap smear cells based on nuclear shape. This study evaluates segmentation methods on the AGMC-TU Pap-Smear dataset, achieving a classification accuracy of 92.83% with SVM Linear and improving to 97.65% using optimized features and the FCM method. Accurate nucleus segmentation is crucial for reliable abnormal cell prediction, enhancing cervical cancer screening efficacy.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 7,67 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783659873713
Quantità: 1 disponibili
Da: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condizione: new. Paperback. Cervical cancer, the second most common cancer globally, is highly curable if detected early. However, rural areas face high mortality rates due to poor resources and limited screening programs. Automated diagnosis can address these gaps by distinguishing abnormal Pap smear cells based on nuclear shape. This study evaluates segmentation methods on the AGMC-TU Pap-Smear dataset, achieving a classification accuracy of 92.83% with SVM Linear and improving to 97.65% using optimized features and the FCM method. Accurate nucleus segmentation is crucial for reliable abnormal cell prediction, enhancing cervical cancer screening efficacy. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783659873713
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783659873713
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9783659873713
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783659873713_new
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26403811474
Quantità: 4 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 72 pp. Englisch. Codice articolo 9783659873713
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 409342797
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18403811480
Quantità: 4 disponibili
Da: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condizione: new. Paperback. Cervical cancer, the second most common cancer globally, is highly curable if detected early. However, rural areas face high mortality rates due to poor resources and limited screening programs. Automated diagnosis can address these gaps by distinguishing abnormal Pap smear cells based on nuclear shape. This study evaluates segmentation methods on the AGMC-TU Pap-Smear dataset, achieving a classification accuracy of 92.83% with SVM Linear and improving to 97.65% using optimized features and the FCM method. Accurate nucleus segmentation is crucial for reliable abnormal cell prediction, enhancing cervical cancer screening efficacy. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Codice articolo 9783659873713
Quantità: 1 disponibili