Articoli correlati a Knowledge Discovery using Machine Learning Algorithms

Knowledge Discovery using Machine Learning Algorithms - Brossura

 
9783659926204: Knowledge Discovery using Machine Learning Algorithms

Sinossi

The goal of this book is to provide a more effective way to extract features with highly important information to a specific disease, i.e. informative features, using correlation based rough set feature extraction method (RSs), rough set, genetic algorithms (GAs) and its variants, fuzzy-rough set, nearest neighbor, decision tree algorithms and partial least square method and some adaptive neural networks due to their learning abilities to construct hypotheses that can explain complex relationships in the data. This research explores the effectiveness of integrated and hybrid feature extraction methods proposed in the following chapters, in analyzing gene expression activities, based on a specific tumor disease and identifying the informative genes that underlie different precision levels in the extraction process. The identified gene subset may give an enhanced insight on the gene-gene interaction in response to different stages of abnormal cell growth which could be vital in designing treatment strategies to prevent any progression of abnormal cells.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

L'autore

Dr. Sujata Dash is currently working as an Associate Professor of Computer Science Department of North Orissa University, Baripada, Odisha, India. She has 25 years of teaching and 17 years of research experience. She has published more than 85 technical papers in international journals/proceedings of international conferences/edited book.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Knowledge Discovery using Machine Learning Algorithms

Immagini fornite dal venditore

Sujata Dash|Bichitrananda Patra
ISBN 10: 3659926205 ISBN 13: 9783659926204
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Dash SujataDr. Sujata Dash is currently working as an Associate Professor of Computer Science Department of North Orissa University, Baripada, Odisha, India. She has 25 years of teaching and 17 years of research experience. She has p. Codice articolo 159147775

Contatta il venditore

Compra nuovo

EUR 52,90
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sujata Dash
ISBN 10: 3659926205 ISBN 13: 9783659926204
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The goal of this book is to provide a more effective way to extract features with highly important information to a specific disease, i.e. informative features, using correlation based rough set feature extraction method (RSs), rough set, genetic algorithms (GAs) and its variants, fuzzy-rough set, nearest neighbor, decision tree algorithms and partial least square method and some adaptive neural networks due to their learning abilities to construct hypotheses that can explain complex relationships in the data. This research explores the effectiveness of integrated and hybrid feature extraction methods proposed in the following chapters, in analyzing gene expression activities, based on a specific tumor disease and identifying the informative genes that underlie different precision levels in the extraction process. The identified gene subset may give an enhanced insight on the gene-gene interaction in response to different stages of abnormal cell growth which could be vital in designing treatment strategies to prevent any progression of abnormal cells. 192 pp. Englisch. Codice articolo 9783659926204

Contatta il venditore

Compra nuovo

EUR 64,90
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sujata Dash
ISBN 10: 3659926205 ISBN 13: 9783659926204
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The goal of this book is to provide a more effective way to extract features with highly important information to a specific disease, i.e. informative features, using correlation based rough set feature extraction method (RSs), rough set, genetic algorithms (GAs) and its variants, fuzzy-rough set, nearest neighbor, decision tree algorithms and partial least square method and some adaptive neural networks due to their learning abilities to construct hypotheses that can explain complex relationships in the data. This research explores the effectiveness of integrated and hybrid feature extraction methods proposed in the following chapters, in analyzing gene expression activities, based on a specific tumor disease and identifying the informative genes that underlie different precision levels in the extraction process. The identified gene subset may give an enhanced insight on the gene-gene interaction in response to different stages of abnormal cell growth which could be vital in designing treatment strategies to prevent any progression of abnormal cells. Codice articolo 9783659926204

Contatta il venditore

Compra nuovo

EUR 64,90
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sujata Dash
ISBN 10: 3659926205 ISBN 13: 9783659926204
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The goal of this book is to provide a more effective way to extract features with highly important information to a specific disease, i.e. informative features, using correlation based rough set feature extraction method (RSs), rough set, genetic algorithms (GAs) and its variants, fuzzy-rough set, nearest neighbor, decision tree algorithms and partial least square method and some adaptive neural networks due to their learning abilities to construct hypotheses that can explain complex relationships in the data. This research explores the effectiveness of integrated and hybrid feature extraction methods proposed in the following chapters, in analyzing gene expression activities, based on a specific tumor disease and identifying the informative genes that underlie different precision levels in the extraction process. The identified gene subset may give an enhanced insight on the gene-gene interaction in response to different stages of abnormal cell growth which could be vital in designing treatment strategies to prevent any progression of abnormal cells.Books on Demand GmbH, Überseering 33, 22297 Hamburg 192 pp. Englisch. Codice articolo 9783659926204

Contatta il venditore

Compra nuovo

EUR 64,90
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Sujata Dash
ISBN 10: 3659926205 ISBN 13: 9783659926204
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 192 pages. 8.66x5.91x0.44 inches. In Stock. Codice articolo 3659926205

Contatta il venditore

Compra nuovo

EUR 106,63
Convertire valuta
Spese di spedizione: EUR 11,57
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello