Speech recognition has been an integral part of human life acting as one of the five senses of human body, because of which application developed on the basis of speech recognition has high degree of acceptance. The analysis of the different steps involved in isolated word recognition using Mel Frequency cepstral coefficients (MFCC), Vector quantization (VQ) and Hidden Markov Model (HMM) is seen here. The simple and efficient approach is used here which can be utilised in embedded systems. After analysing the steps above we realised the process using small programs using MATLAB which is able to do small number of isolated word recognition.The work done here develops a speaker independent isolated word recognizer from the acoustic signals based on a discrete observation Hidden Markov Model (HMM). The study implements the HMM based isolated word recognizer in three steps- Speech Segmentation,Feature extraction and Feature Matching.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Prof. Mahesh K. Patil completed M.E.(Electronics Engg.) from Shivaji University India. He is currently working as Assistant Professor in DKTES's TEI Ichalkarnji,Maharashtra, India. His academic experience is 6 years. His area of specialization is speech processing, Electromagnetic and Microwave engineering.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 23,00 per la spedizione da Germania a U.S.A.
Destinazione, tempi e costiDa: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Speech recognition has been an integral part of human life acting as one of the five senses of human body, because of which application developed on the basis of speech recognition has high degree of acceptance. The analysis of the different steps involved in isolated word recognition using Mel Frequency cepstral coefficients (MFCC), Vector quantization (VQ) and Hidden Markov Model (HMM) is seen here. The simple and efficient approach is used here which can be utilised in embedded systems. After analysing the steps above we realised the process using small programs using MATLAB which is able to do small number of isolated word recognition.The work done here develops a speaker independent isolated word recognizer from the acoustic signals based on a discrete observation Hidden Markov Model (HMM). The study implements the HMM based isolated word recognizer in three steps- Speech Segmentation,Feature extraction and Feature Matching. 80 pp. Englisch. Codice articolo 9783659942839
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Patil MaheshProf. Mahesh K. Patil completed M.E.(Electronics Engg.) from Shivaji University India. He is currently working as Assistant Professor in DKTES s TEI Ichalkarnji,Maharashtra, India. His academic experience is 6 years. His . Codice articolo 158878013
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 80 pages. 8.66x5.91x0.19 inches. In Stock. Codice articolo 3659942839
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Speech recognition has been an integral part of human life acting as one of the five senses of human body, because of which application developed on the basis of speech recognition has high degree of acceptance. The analysis of the different steps involved in isolated word recognition using Mel Frequency cepstral coefficients (MFCC), Vector quantization (VQ) and Hidden Markov Model (HMM) is seen here. The simple and efficient approach is used here which can be utilised in embedded systems. After analysing the steps above we realised the process using small programs using MATLAB which is able to do small number of isolated word recognition.The work done here develops a speaker independent isolated word recognizer from the acoustic signals based on a discrete observation Hidden Markov Model (HMM). The study implements the HMM based isolated word recognizer in three steps- Speech Segmentation,Feature extraction and Feature Matching.Books on Demand GmbH, Überseering 33, 22297 Hamburg 80 pp. Englisch. Codice articolo 9783659942839
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Speech recognition has been an integral part of human life acting as one of the five senses of human body, because of which application developed on the basis of speech recognition has high degree of acceptance. The analysis of the different steps involved in isolated word recognition using Mel Frequency cepstral coefficients (MFCC), Vector quantization (VQ) and Hidden Markov Model (HMM) is seen here. The simple and efficient approach is used here which can be utilised in embedded systems. After analysing the steps above we realised the process using small programs using MATLAB which is able to do small number of isolated word recognition.The work done here develops a speaker independent isolated word recognizer from the acoustic signals based on a discrete observation Hidden Markov Model (HMM). The study implements the HMM based isolated word recognizer in three steps- Speech Segmentation,Feature extraction and Feature Matching. Codice articolo 9783659942839
Quantità: 1 disponibili