I. Linear Algebra.- § 1. The Linear Space with Real Multiplier Domain.- § 2. Finite Dimensional Linear Spaces.- § 3. Linear Mappings.- § 4. Bilinear and Quadratic Functions.- § 5. Multilinear Functions.- § 6. Metrization of Affine Spaces.- II. Differential Calculus.- § 1. Derivatives and Differentials.- § 2. Taylor's Formula.- § 3. Partial Differentiation.- § 4. Implicit Functions.- III. Integral Calculus.- § 1. The Affine Integral.- § 2. Theorem of Stokes.- § 3. Applications of Stokes's Theorem.- IV. Differential Equations.- § 1. Normal Systems.- § 2. The General Differential Equation of First Order.- § 3. The Linear Differential Equation of Order One.- V. Theory of Curves and Surfaces.- § 1. Regular Curves and Surfaces.- § 2. Curve Theory.- § 3. Surface Theory.- § 4. Vectors and Tensors.- § 5 Integration of the Derivative Formulas.- § 6. Theorema Egregium.- § 7. Parallel Translation.- § 8. The Gauss-Bonnet Theorem.- VI. Riemannian Geometry.- § 1. Affine Differential Geometry.- § 2. Riemannian Geometry.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
(nessuna copia disponibile)
Cerca: Inserisci un desiderataNon riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!
Inserisci un desiderata