Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies.
This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the algorithms, a unified pseudocode representation of each algorithm, and program code which is available for download. In addition, a taxonomy of these algorithms is provided to clarify similarities and differences as well as historical relationships between the various instances of evolution strategies. Moreover, due to the authors’ focus on industrial applications of nonlinear optimization, all algorithms are empirically compared on the so-called BBOB (Black-Box Optimization Benchmarking) test function suite, and ranked according to their performance. In contrast to classical academic comparisons, however, only a very small number of objective function evaluations is permitted. In particular, an extremely small number of evaluations, such as between one hundred and one thousand for high-dimensional functions, is considered. This is motivated by the fact that many industrial optimization tasks do not permit more than a few hundred evaluations. Our experiments suggest that evolution strategies are powerful nonlinear direct optimizers even for challenging industrial problems with a very small budget of function evaluations.
The book is suitable for academic and industrial researchers and practitioners.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Thomas Bäck is a full Professor of Computer Science at Leiden University, The Netherlands. He received his PhD, under the supervision of Hans-Paul Schwefel, from Dortmund University, Germany in 1994, and worked for the Informatik Centrum Dortmund from 1994 to 2000. He is president and founder of divis intelligent solutions, a company providing optimization and data mining software and consulting services; among its clients are companies such as Audi, BMW, Daimler, Ford and Honda. He has more than 200 publications on natural computing algorithms; he wrote the book Evolutionary Algorithms: Theory and Practice, coedited the Handbook of Evolutionary Computation, and coedited the Handbook of Natural Computing. He received the best dissertation award from the Gesellschaft für Informatik (GI) in 1995 and is an elected fellow of the Intl. Society for Genetic and Evolutionary Computation.
Christophe Foussette is a software development expert at divis intelligent solutions, Dortmund, Germany; previously he worked for NuTech Solutions. He received his MSc from Dortmund University in 2013. He specializes in data mining and nonlinear optimization algorithms based on evolution strategies, applied to complex industrial problems.
Peter Krause is the head of project management and R&D at divis intelligent solutions, Dortmund, Germany. He received his PhD from Dortmund University in 2001. His research focused on data mining, fuzzy logic and the generation and optimization of fuzzy systems. From 2002 to 2009 he worked with NuTech Solutions as senior scientist and project manager, supervising customer projects and developing new methods in the field of data-driven modeling and model analysis. He has authored than 30 research publications, and has considerable experience in deploying single- and multiobjective contemporary evolution strategies for practical problems in industry; he also is an expert in object-oriented development, GUI development, SQL and C/C++.
Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies.
This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the algorithms, a unified pseudocode representation of each algorithm, and program code which is available for download. In addition, a taxonomy of these algorithms is provided to clarify similarities and differences as well as historical relationships between the various instances of evolution strategies. Moreover, due to the authors’ focus on industrial applications of nonlinear optimization, all algorithms are empirically compared on the so-called BBOB (Black-Box Optimization Benchmarking) test function suite, and ranked according to their performance. In contrast to classical academic comparisons, however, only a very small number of objective function evaluations is permitted. In particular, an extremely small number of evaluations, such as between one hundred and one thousand for high-dimensional functions, is considered. This is motivated by the fact that many industrial optimization tasks do not permit more than a few hundred evaluations. Our experiments suggest that evolution strategies are powerful nonlinear direct optimizers even for challenging industrial problems with a very small budget of function evaluations.
The book is suitable for academic and industrial researchers and practitioners.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,79 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Modern, comprehensive treatment of the key approachesAuthors software available for downloadValuable for industrial and academic researchers and practitionersThomas Baeck is a full Professor of Computer Science at Leiden Universi. Codice articolo 458745122
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book surveys key algorithm developments between 1990 and 2012, with brief descriptions, a unified pseudocode for each algorithm and downloadable program code. Provides a taxonomy to clarify similarities and differences as well as historical relationships. 90 pp. Englisch. Codice articolo 9783662514085
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783662514085_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Evolution strategies have more than 50 years of history in the field of evolutionary computation. Since the early 1990s, many algorithmic variations of evolution strategies have been developed, characterized by the fact that they use the so-called derandomization concept for strategy parameter adaptation. Most importantly, the covariance matrix adaptation strategy (CMA-ES) and its successors are the key representatives of this group of contemporary evolution strategies. This book provides an overview of the key algorithm developments between 1990 and 2012, including brief descriptions of the algorithms, a unified pseudocode representation of each algorithm, and program code which is available for download. In addition, a taxonomy of these algorithms is provided to clarify similarities and differences as well as historical relationships between the various instances of evolution strategies. Moreover, due to the authors' focus on industrial applications of nonlinear optimization, all algorithms are empirically compared on the so-called BBOB (Black-Box Optimization Benchmarking) test function suite, and ranked according to their performance. In contrast to classical academic comparisons, however, only a very small number of objective function evaluations is permitted. In particular, an extremely small number of evaluations, such as between one hundred and one thousand for high-dimensional functions, is considered. This is motivated by the fact that many industrial optimization tasks do not permit more than a few hundred evaluations. Our experiments suggest that evolution strategies are powerful nonlinear direct optimizers even for challenging industrial problems with a very small budget of function evaluations. The book is suitable for academic and industrial researchers and practitioners. Codice articolo 9783662514085
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 27175144-n
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783662514085
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 27175144-n
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9783662514085
Quantità: 10 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 90. Codice articolo 26374996904
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 90. Codice articolo 372129911
Quantità: 4 disponibili