Articoli correlati a Conjugate gradient method for the solution of optimal...

Conjugate gradient method for the solution of optimal control problems governed by weakly singular Volterra integral equations with the use of the collocation method - Brossura

 
9783668494169: Conjugate gradient method for the solution of optimal control problems governed by weakly singular Volterra integral equations with the use of the collocation method

Sinossi

Seminar paper from the year 2015 in the subject Mathematics - Applied Mathematics, grade: A, , language: English, abstract: In this research, a novel method to approximate the solution of optimal control problems governed by Volterra integral equations of weakly singular types is proposed. The method introduced here is the conjugate gradient method with a discretization of the problem based on the collocation approach on graded mesh points for non linear Volterra integral equations with singular kernels. Necessary and sufficient optimality conditions for optimal control problems are also discussed. Some examples are presented to demonstrate the efficiency of the method.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

EUR 11,00 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Conjugate gradient method for the solution of optimal...

Immagini fornite dal venditore

Henry Ekah-Kunde
Editore: GRIN Verlag Aug 2017, 2017
ISBN 10: 3668494169 ISBN 13: 9783668494169
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Seminar paper from the year 2015 in the subject Mathematics - Applied Mathematics, grade: A, , language: English, abstract: In this research, a novel method to approximate the solution of optimal control problems governed by Volterra integral equations of weakly singular types is proposed. The method introduced here is the conjugate gradient method with a discretization of the problem based on the collocation approach on graded mesh points for non linear Volterra integral equations with singular kernels. Necessary and sufficient optimality conditions for optimal control problems are also discussed. Some examples are presented to demonstrate the efficiency of the method. 28 pp. Englisch. Codice articolo 9783668494169

Contatta il venditore

Compra nuovo

EUR 17,95
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Henry Ekah-Kunde
Editore: GRIN Verlag, 2017
ISBN 10: 3668494169 ISBN 13: 9783668494169
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Seminar paper from the year 2015 in the subject Mathematics - Applied Mathematics, grade: A, , language: English, abstract: In this research, a novel method to approximate the solution of optimal control problems governed by Volterra integral equations of weakly singular types is proposed. The method introduced here is the conjugate gradient method with a discretization of the problem based on the collocation approach on graded mesh points for non linear Volterra integral equations with singular kernels. Necessary and sufficient optimality conditions for optimal control problems are also discussed. Some examples are presented to demonstrate the efficiency of the method. Codice articolo 9783668494169

Contatta il venditore

Compra nuovo

EUR 17,95
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Henry Ekah-Kunde
ISBN 10: 3668494169 ISBN 13: 9783668494169
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -Seminar paper from the year 2015 in the subject Mathematics - Applied Mathematics, grade: A, , language: English, abstract: In this research, a novel method to approximate the solution of optimal control problems governed by Volterra integral equations of weakly singular types is proposed. The method introduced here is the conjugate gradient method with a discretization of the problem based on the collocation approach on graded mesh points for non linear Volterra integral equations with singular kernels. Necessary and sufficient optimality conditions for optimal control problems are also discussed. Some examples are presented to demonstrate the efficiency of the method.Books on Demand GmbH, Überseering 33, 22297 Hamburg 28 pp. Englisch. Codice articolo 9783668494169

Contatta il venditore

Compra nuovo

EUR 17,95
Convertire valuta
Spese di spedizione: EUR 15,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Henry Ekah-Kunde
Editore: GRIN Verlag, 2017
ISBN 10: 3668494169 ISBN 13: 9783668494169
Nuovo Taschenbuch

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Conjugate gradient method for the solution of optimal control problems governed by weakly singular Volterra integral equations with the use of the collocation method | Henry Ekah-Kunde | Taschenbuch | 28 S. | Englisch | 2017 | GRIN Verlag | EAN 9783668494169 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Codice articolo 109556965

Contatta il venditore

Compra nuovo

EUR 17,95
Convertire valuta
Spese di spedizione: EUR 45,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello