Articoli correlati a XGBoost. The Extreme Gradient Boosting for Mining Applicatio...

XGBoost. The Extreme Gradient Boosting for Mining Applications - Brossura

 
9783668660618: XGBoost. The Extreme Gradient Boosting for Mining Applications

Sinossi

Technical Report from the year 2017 in the subject Computer Science - Internet, New Technologies, grade: 8, , language: English, abstract: Tree boosting has empirically proven to be a highly effective and versatile approach for data-driven modelling. The core argument is that tree boosting can adaptively determine the local neighbourhoods of the model thereby taking the bias-variance trade-off into consideration during model fitting. Recently, a tree boosting method known as XGBoost has gained popularity by providing higher accuracy. XGBoost further introduces some improvements which allow it to deal with the bias-variance trade-off even more carefully. In this research work, we propose to demonstrate the use of an adaptive procedure i.e. Learned Loss (LL) to update the loss function as the boosting proceeds. Accuracy of the proposed algorithm i.e. XGBoost with Learned Loss boosting function is evaluated using test/train method, K-fold cross validation, and Stratified cross validation method and compared with the state of the art algorithms viz. XGBoost, AdaBoost, AdaBoost-NN, Linear Regression(LR),Neural Network(NN), Decision Tree(DT), Support Vector Machine(SVM), bagging-DT, bagging-NN and Random Forest algorithms. The parameters evaluated are accuracy, Type 1 error and Type 2 error (in Percentages). This study uses total ten years of historical data from Jan 2007 to Aug 2017 of two stock market indices CNX Nifty and S&P BSE Sensex which are highly voluminous. Further, in this research work, we will investigate how XGBoost differs from the more traditional ensemble techniques. Moreover, we will discuss the regularization techniques that these methods offer and the effect these have on the models. In addition to this, we will attempt to answer the question of why XGBoost seems to win so many competitions. To do this, we will provide some arguments for why tree boosting, and in particular XGBoost, seems to be such a highly effective and versatile approach t

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Zustand: Hervorragend | Sprache...
Visualizza questo articolo

EUR 9,90 per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 11,00 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per XGBoost. The Extreme Gradient Boosting for Mining Applicatio...

Foto dell'editore

Nonita Sharma
Editore: GRIN Verlag, 2018
ISBN 10: 3668660611 ISBN 13: 9783668660618
Antico o usato Brossura

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Codice articolo 31589299/1

Contatta il venditore

Compra usato

EUR 19,36
Convertire valuta
Spese di spedizione: EUR 9,90
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Sharma, Nonita
Editore: Grin Verlag, 2018
ISBN 10: 3668660611 ISBN 13: 9783668660618
Antico o usato Paperback

Da: ThriftBooks-Dallas, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 0.2. Codice articolo G3668660611I3N00

Contatta il venditore

Compra usato

EUR 33,36
Convertire valuta
Spese di spedizione: EUR 1,29
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Nonita Sharma
Editore: GRIN Verlag Mrz 2018, 2018
ISBN 10: 3668660611 ISBN 13: 9783668660618
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Technical Report from the year 2017 in the subject Computer Science - Internet, New Technologies, grade: 8, , language: English, abstract: Tree boosting has empirically proven to be a highly effective and versatile approach for data-driven modelling. The core argument is that tree boosting can adaptively determine the local neighbourhoods of the model thereby taking the bias-variance trade-off into consideration during model fitting. Recently, a tree boosting method known as XGBoost has gained popularity by providing higher accuracy. XGBoost further introduces some improvements which allow it to deal with the bias-variance trade-off even more carefully. In this research work, we propose to demonstrate the use of an adaptive procedure i.e. Learned Loss (LL) to update the loss function as the boosting proceeds. Accuracy of the proposed algorithm i.e. XGBoost with Learned Loss boosting function is evaluated using test/train method, K-fold cross validation, and Stratified cross validation method and compared with the state of the art algorithms viz. XGBoost, AdaBoost, AdaBoost-NN, Linear Regression(LR),Neural Network(NN), Decision Tree(DT), Support Vector Machine(SVM), bagging-DT, bagging-NN and Random Forest algorithms. The parameters evaluated are accuracy, Type 1 error and Type 2 error (in Percentages). This study uses total ten years of historical data from Jan 2007 to Aug 2017 of two stock market indices CNX Nifty and S&P BSE Sensex which are highly voluminous.Further, in this research work, we will investigate how XGBoost differs from the more traditional ensemble techniques. Moreover, we will discuss the regularization techniques that these methods offer and the effect these have on the models.In addition to this, we will attempt to answer the question of why XGBoost seems to win so many competitions. To do this, we will provide some arguments for why tree boosting, and in particular XGBoost, seems to be such a highly effective and versatile approach to predictive modelling. The core argument is that tree boosting can be seen to adaptively determine the local neighbourhoods of the model. Tree boosting can thus be seen to take the bias-variance trade off into consideration during model fitting. XGBoost further introduces some improvements which allow it to deal with the bias-variance trade off even more carefully. 60 pp. Englisch. Codice articolo 9783668660618

Contatta il venditore

Compra nuovo

EUR 27,95
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Nonita Sharma
Editore: GRIN Verlag, 2018
ISBN 10: 3668660611 ISBN 13: 9783668660618
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Technical Report from the year 2017 in the subject Computer Science - Internet, New Technologies, grade: 8, , language: English, abstract: Tree boosting has empirically proven to be a highly effective and versatile approach for data-driven modelling. The core argument is that tree boosting can adaptively determine the local neighbourhoods of the model thereby taking the bias-variance trade-off into consideration during model fitting. Recently, a tree boosting method known as XGBoost has gained popularity by providing higher accuracy. XGBoost further introduces some improvements which allow it to deal with the bias-variance trade-off even more carefully. In this research work, we propose to demonstrate the use of an adaptive procedure i.e. Learned Loss (LL) to update the loss function as the boosting proceeds. Accuracy of the proposed algorithm i.e. XGBoost with Learned Loss boosting function is evaluated using test/train method, K-fold cross validation, and Stratified cross validation method and compared with the state of the art algorithms viz. XGBoost, AdaBoost, AdaBoost-NN, Linear Regression(LR),Neural Network(NN), Decision Tree(DT), Support Vector Machine(SVM), bagging-DT, bagging-NN and Random Forest algorithms. The parameters evaluated are accuracy, Type 1 error and Type 2 error (in Percentages). This study uses total ten years of historical data from Jan 2007 to Aug 2017 of two stock market indices CNX Nifty and S&P BSE Sensex which are highly voluminous.Further, in this research work, we will investigate how XGBoost differs from the more traditional ensemble techniques. Moreover, we will discuss the regularization techniques that these methods offer and the effect these have on the models.In addition to this, we will attempt to answer the question of why XGBoost seems to win so many competitions. To do this, we will provide some arguments for why tree boosting, and in particular XGBoost, seems to be such a highly effective and versatile approach to predictive modelling. The core argument is that tree boosting can be seen to adaptively determine the local neighbourhoods of the model. Tree boosting can thus be seen to take the bias-variance trade off into consideration during model fitting. XGBoost further introduces some improvements which allow it to deal with the bias-variance trade off even more carefully. Codice articolo 9783668660618

Contatta il venditore

Compra nuovo

EUR 27,95
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Sharma, Nonita
Editore: Grin Verlag, 2018
ISBN 10: 3668660611 ISBN 13: 9783668660618
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 60. Codice articolo 26389367631

Contatta il venditore

Compra nuovo

EUR 45,37
Convertire valuta
Spese di spedizione: EUR 7,73
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Sharma, Nonita
Editore: Grin Verlag, 2018
ISBN 10: 3668660611 ISBN 13: 9783668660618
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9783668660618

Contatta il venditore

Compra nuovo

EUR 46,87
Convertire valuta
Spese di spedizione: EUR 7,73
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Sharma, Nonita
Editore: Grin Verlag, 2018
ISBN 10: 3668660611 ISBN 13: 9783668660618
Nuovo Brossura
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND pp. 60. Codice articolo 18389367621

Contatta il venditore

Compra nuovo

EUR 48,32
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Sharma, Nonita
Editore: Grin Verlag, 2018
ISBN 10: 3668660611 ISBN 13: 9783668660618
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand pp. 60. Codice articolo 390264976

Contatta il venditore

Compra nuovo

EUR 46,29
Convertire valuta
Spese di spedizione: EUR 10,21
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Sharma, Nonita
Editore: Grin Verlag 3/14/2018, 2018
ISBN 10: 3668660611 ISBN 13: 9783668660618
Nuovo Paperback or Softback

Da: BargainBookStores, Grand Rapids, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback or Softback. Condizione: New. Xgboost. the Extreme Gradient Boosting for Mining Applications 0.2. Book. Codice articolo BBS-9783668660618

Contatta il venditore

Compra nuovo

EUR 45,66
Convertire valuta
Spese di spedizione: EUR 11,59
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Nonita Sharma
Editore: GRIN Verlag, 2018
ISBN 10: 3668660611 ISBN 13: 9783668660618
Nuovo Taschenbuch

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. XGBoost. The Extreme Gradient Boosting for Mining Applications | Nonita Sharma | Taschenbuch | 60 S. | Englisch | 2018 | GRIN Verlag | EAN 9783668660618 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Codice articolo 112536042

Contatta il venditore

Compra nuovo

EUR 27,95
Convertire valuta
Spese di spedizione: EUR 45,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello