Document from the year 2018 in the subject Engineering - Chemical Engineering, The University of Malaya, language: English, abstract: Granular palm shell activated carbon (AC) was impregnated separately with monoethanolamine (MEA) and 2-amino-2-methyl-1-propanol (AMP) to improve its natural capacity and selectivity for carbon dioxide (CO2) adsorption. The total surface area, micropore volume, as well as the heterogeneity of the impregnated AC particles was considerably reduced due to impregnation. CO2 intake of impregnated 500 μm AC particles improved significantly and adsorptive capacity of 500 μm MEA-impregnated AC particles improved by 172 % and 44 % comparing to non-impregnated and AMP-impregnated AC particles respectively. Solid state amine stoichiometric results indicated that adsorption capacity of unhindered amine (MEA) is higher than that of hindered amine (AMP) by 50 % contrary to liquid amines standard stoichiometry. Exhausted AMPimpregnated beds were regenerated by sweeping at room temperature with stream of pure nitrogen (N2) flowing at 60 ml/min for 4 hours. Heating up to 75 °C was required to regenerate exhausted MEA-impregnated beds. Increasing feed gas flow rate has adverse effect on breakthrough time more than increasing bed operating temperature. Breakthrough time was utilized to evaluate the performance of the different adsorption beds.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 11,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Document from the year 2018 in the subject Engineering - Chemical Engineering, The University of Malaya, language: English, abstract: Granular palm shell activated carbon (AC) was impregnated separately with monoethanolamine (MEA) and 2-amino-2-methyl-1-propanol (AMP) to improve its natural capacity and selectivity for carbon dioxide (CO2) adsorption. The total surface area, micropore volume, as well as the heterogeneity of the impregnated AC particles was considerably reduced due to impregnation. CO2 intake of impregnated 500 mim AC particles improved significantly and adsorptive capacity of 500 mim MEA-impregnated AC particles improved by 172 % and 44 % comparing to non-impregnated and AMP-impregnated AC particles respectively. Solid state amine stoichiometric results indicated that adsorption capacity of unhindered amine (MEA) is higher than that of hindered amine (AMP) by 50 % contrary to liquid amines standard stoichiometry. Exhausted AMPimpregnated beds were regenerated by sweeping at room temperature with stream of pure nitrogen (N2) flowing at 60 ml/min for 4 hours. Heating up to 75 °C was required to regenerate exhausted MEA-impregnated beds. Increasing feed gas flow rate has adverse effect on breakthrough time more than increasing bed operating temperature. Breakthrough time was utilized to evaluate the performance of the different adsorption beds. 32 pp. Englisch. Codice articolo 9783668795488
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Document from the year 2018 in the subject Engineering - Chemical Engineering, The University of Malaya, language: English, abstract: Granular palm shell activated carbon (AC) was impregnated separately with monoethanolamine (MEA) and 2-amino-2-methyl-1-propanol (AMP) to improve its natural capacity and selectivity for carbon dioxide (CO2) adsorption. The total surface area, micropore volume, as well as the heterogeneity of the impregnated AC particles was considerably reduced due to impregnation. CO2 intake of impregnated 500 mim AC particles improved significantly and adsorptive capacity of 500 mim MEA-impregnated AC particles improved by 172 % and 44 % comparing to non-impregnated and AMP-impregnated AC particles respectively. Solid state amine stoichiometric results indicated that adsorption capacity of unhindered amine (MEA) is higher than that of hindered amine (AMP) by 50 % contrary to liquid amines standard stoichiometry. Exhausted AMPimpregnated beds were regenerated by sweeping at room temperature with stream of pure nitrogen (N2) flowing at 60 ml/min for 4 hours. Heating up to 75 °C was required to regenerate exhausted MEA-impregnated beds. Increasing feed gas flow rate has adverse effect on breakthrough time more than increasing bed operating temperature. Breakthrough time was utilized to evaluate the performance of the different adsorption beds. Codice articolo 9783668795488
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Document from the year 2018 in the subject Engineering - Chemical Engineering, The University of Malaya, language: English, abstract: Granular palm shell activated carbon (AC) was impregnated separately with monoethanolamine (MEA) and 2-amino-2-methyl-1-propanol (AMP) to improve its natural capacity and selectivity for carbon dioxide (CO2) adsorption. The total surface area, micropore volume, as well as the heterogeneity of the impregnated AC particles was considerably reduced due to impregnation. CO2 intake of impregnated 500 ¿m AC particles improved significantly and adsorptive capacity of 500 ¿m MEA-impregnated AC particles improved by 172 % and 44 % comparing to non-impregnated and AMP-impregnated AC particles respectively. Solid state amine stoichiometric results indicated that adsorption capacity of unhindered amine (MEA) is higher than that of hindered amine (AMP) by 50 % contrary to liquid amines standard stoichiometry. Exhausted AMPimpregnated beds were regenerated by sweeping at room temperature with stream of pure nitrogen (N2) flowing at 60 ml/min for 4 hours. Heating up to 75 °C was required to regenerate exhausted MEA-impregnated beds. Increasing feed gas flow rate has adverse effect on breakthrough time more than increasing bed operating temperature. Breakthrough time was utilized to evaluate the performance of the different adsorption beds.Books on Demand GmbH, Überseering 33, 22297 Hamburg 32 pp. Englisch. Codice articolo 9783668795488
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 32. Codice articolo 26376342332
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 32. Codice articolo 18376342326
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 32. Codice articolo 370751715
Quantità: 4 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783668795488
Quantità: 1 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Effects on Surface Area. Intake Capacity and Regeneration of Monoethanolamine | Palm-Shell Activated Carbon Prepared for CO2 Adsorption | Mohamad K. Aroua (u. a.) | Taschenbuch | 32 S. | Englisch | 2018 | GRIN Verlag | EAN 9783668795488 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Codice articolo 114755052
Quantità: 5 disponibili