Deep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht.
Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz.
Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.
Aus dem Inhalt:Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Andrew W. Trask ist Doktorand an der Oxford University und als Research Scientist für DeepMind tätig. Zuvor war er Researcher und Analytics Product Manager bei Digital Reasoning, wo er das größte künstliche Neuronale Netz der Welt trainierte und für die Analytics Roadmap der Synthesys Cognitive Computing Platform verantwortlich war.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 4,50 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 7,95 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: medimops, Berlin, Germania
Condizione: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Codice articolo M03747500153-G
Quantità: 1 disponibili
Da: Wegmann1855, Zwiesel, Germania
Taschenbuch. Condizione: Neu. Neuware -Aus dem Inhalt: Codice articolo 9783747500156
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Von den Grundlagen Neuronaler Netze ueber Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning o. Codice articolo 310213776
Quantità: 3 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. Neuware -Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlichDeep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht. Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz. Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.Aus dem Inhalt:Parametrische und nichtparametrische ModelleÜberwachtes und unüberwachtes LernenVorhersagen mit mehreren Ein- und AusgabenFehler messen und verringernHot und Cold LearningBatch- und stochastischer GradientenabstiegÜberanpassung vermeidenGeneralisierungDropout-VerfahrenBackpropagation und Forward PropagationBilderkennungVerarbeitung natürlicher Sprache (NLP)SprachmodellierungAktivierungsfunktionenSigmoid-FunktionTangens hyperbolicusSoftmaxConvolutional Neural Networks (CNNs)Recurrent Neural Networks (RNNs)Long Short-Term Memory (LSTM)Deep-Learning-Framework erstellen 354 pp. Deutsch. Codice articolo 9783747500156
Quantità: 1 disponibili
Da: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. Neuware -Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlichDeep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht. Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz. Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.Aus dem Inhalt:Parametrische und nichtparametrische ModelleÜberwachtes und unüberwachtes LernenVorhersagen mit mehreren Ein- und AusgabenFehler messen und verringernHot und Cold LearningBatch- und stochastischer GradientenabstiegÜberanpassung vermeidenGeneralisierungDropout-VerfahrenBackpropagation und Forward PropagationBilderkennungVerarbeitung natürlicher Sprache (NLP)SprachmodellierungAktivierungsfunktionenSigmoid-FunktionTangens hyperbolicusSoftmaxConvolutional Neural Networks (CNNs)Recurrent Neural Networks (RNNs)Long Short-Term Memory (LSTM)Deep-Learning-Framework erstellen 354 pp. Deutsch. Codice articolo 9783747500156
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Neuware - Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-AlgorithmenAnschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPyKeine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlichDeep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht. Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz. Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.Aus dem Inhalt:Parametrische und nichtparametrische ModelleÜberwachtes und unüberwachtes LernenVorhersagen mit mehreren Ein- und AusgabenFehler messen und verringernHot und Cold LearningBatch- und stochastischer GradientenabstiegÜberanpassung vermeidenGeneralisierungDropout-VerfahrenBackpropagation und Forward PropagationBilderkennungVerarbeitung natürlicher Sprache (NLP)SprachmodellierungAktivierungsfunktionenSigmoid-FunktionTangens hyperbolicusSoftmaxConvolutional Neural Networks (CNNs)Recurrent Neural Networks (RNNs)Long Short-Term Memory (LSTM)Deep-Learning-Framework erstellen. Codice articolo 9783747500156
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Aus dem Inhalt:MITP Verlags GmbH, Augustinusstraße 9a, 50226 Frechen 354 pp. Deutsch. Codice articolo 9783747500156
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 401922189
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26394487634
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 39011512
Quantità: 3 disponibili