Die Arbeit gliedert sich in drei Kapitel, von denen sich die Kapitel I und n mit Theorie und Anwendungen befassen, während III eine Ausdehnung des QD-Algorithmus auf Vektoren behandelt.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
I. Kapitel. Theoretische Grundlagen.- § 1. Problemstellung.- § 2. Der Quotienten-Differenzen-Algorithmus.- § 3. Die Rhombenregeln.- § 4. Die zugeordneten Polynome p?(v)(Z).- § 5. Beziehungen zur Kettenbruchtheorie.- § 6. Schwierigkeiten bei der Bildung des QD-Schemas.- § 7. Grundlegende Eigenschaften des QD-Algorithmus.- § 8. Beziehungen zum BO-Algorithmus von C. LAnczos.- § 9. Beziehungen zum cg-Algorithmus.- § 10. Ein Additionstheorem für Kettenbrüche.- II. Kapitel. Anwendungen des QD-Algorithmus.- § 1. Umwandlung einer Potenzreihe in einen Kettenbruch.- § 2. Summation schlecht konvergenter Reihen.- § 3. Auflösung von algebraischen Gleichungen.- § 4. Die progressive Form des QD-Algorithmus.- § 5. Auflösung algebraischer Gleichung mit Hilfe des progressiven QD-Algorithmus.- § 6. Die Wronskische Formel.- § 7. Bestimmung komplexer Nullstellen.- § 8. Quadratische Konvergenz des QD-Algorithmus.- § 9. Massnahmen bei Division durch Null.- § 10. Interpolation durch Exponentialsummen.- III. Kapitel. Bestimmung der Eigenwerte und Eigenvektoren einer Matrix mit Hilfe des Quotienten-Differenzen-Algorithmus.- § 1. Die Bestimmung der Eigenwerte.- § 2. Das Problem der Eigenvektorberechnung.- § 3. Rekursive Berechnung der Vektoren x?(2µ), y?(2µ).- § 4. Ein quadratisch konvergentes Verfahren zur Eigenvektorbestimmung.- § 5. Eigenwerte und Eigenvektoren unendlicher symmetrischer Matrizen.- IV. Kapitel. Anhang.- § 1. Die LR-Transformation.- § 2. Ein kontinuierliches Analogon zum QD-Algorithmus.- § 3. QD-Relaxation.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 2,26 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 2,26 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 19919949-n
Quantità: 15 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Apr0316110058247
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. Im Anschluss an eine praktische Anwendung des BO-Algorithmus (Biortho gonalisierungs-Algorithmus von C. LANCZOS [4], [5]1) machte mich Herr Prof. E. STIEFEL, ETH, auf das Problem aufmerksam, die hoeheren Eigenwerte direkt aus den sogenannten Schwarzsehen Konstanten zu bestimmen, das heisst ohne den Umweg ueber die Orthogonalisierung. Auf diese Anregung hin entwickelte der Verfasser einen Algorithmus, der die gestellte Aufgabe loest. Allerdings gab bereits A. C. AITKEN [1] eine Methode an, welche haupt saechlich zur Aufloesung algebraischer Gleichungen gedacht war, aber auch die Bestimmung hoeherer Eigenwerte aus Schwarzsehen Konstanten gestattet. 2 Ferner stammt von C. LANCZOS ein Algorithmus ) zur Bestimmung des charak teristischen Polynoms einer Matrix aus Schwarzsehen Konstanten. UEberdies entwickelte J. HADAMARD in seiner Dissertation [2] eine Methode zur Bestim mung der Pole einer durch ihre Potenzreihe gegebenen Funktion. Er hat damit, wie 1 zeigen wird, auch das eingangs erwaehnte Eigenwertproblem geloest. Wenn hier das schon geloeste Problem nochmals aufgegriffen wird, so geschieht dies deshalb, weil der entwickelte Algorithmus eine Reihe von weiteren An wendungen gestattet und insbesondere auch wertvolle Beziehungen zur Ketten bruchtheorie vermittelt3). Die Arbeit gliedert sich in drei Kapitel, von denen sich die Kapitel I und n mit Theorie und Anwendungen befassen, waehrend III eine Ausdehnung des QD-Algorithmus auf Vektoren behandelt. Schliesslich folgt ein Anhang ueber verwandte Methoden (insbesondere die LR-Transformation). Die Kapitel I, n, In sind einzeln bereits in der ZAMP erschienen'), doch ist zu beachten, dass I und n zum Teil erhebliche Veraenderungen erfahren haben. Die Arbeit gliedert sich in drei Kapitel, von denen sich die Kapitel I und n mit Theorie und Anwendungen befassen, waehrend III eine Ausdehnung des QD-Algorithmus auf Vektoren behandelt. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783764303235
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 19919949
Quantità: 15 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783764303235
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In German. Codice articolo ria9783764303235_new
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9783764303235
Quantità: 10 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 82. Codice articolo 2697107499
Quantità: 4 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Im Anschluss an eine praktische Anwendung des BO-Algorithmus (Biortho gonalisierungs-Algorithmus von C. LANCZOS [4], [5]1) machte mich Herr Prof. E. STIEFEL, ETH, auf das Problem aufmerksam, die höheren Eigenwerte direkt aus den sogenannten Schwarzsehen Konstanten zu bestimmen, das heisst ohne den Umweg über die Orthogonalisierung. Auf diese Anregung hin entwickelte der Verfasser einen Algorithmus, der die gestellte Aufgabe löst. Allerdings gab bereits A. C. AITKEN [1] eine Methode an, welche haupt sächlich zur Auflösung algebraischer Gleichungen gedacht war, aber auch die Bestimmung höherer Eigenwerte aus Schwarzsehen Konstanten gestattet. 2 Ferner stammt von C. LANCZOS ein Algorithmus ) zur Bestimmung des charak teristischen Polynoms einer Matrix aus Schwarzsehen Konstanten. Überdies entwickelte J. HADAMARD in seiner Dissertation [2] eine Methode zur Bestim mung der Pole einer durch ihre Potenzreihe gegebenen Funktion. Er hat damit, wie 1 zeigen wird, auch das eingangs erwähnte Eigenwertproblem gelöst. Wenn hier das schon gelöste Problem nochmals aufgegriffen wird, so geschieht dies deshalb, weil der entwickelte Algorithmus eine Reihe von weiteren An wendungen gestattet und insbesondere auch wertvolle Beziehungen zur Ketten bruchtheorie vermittelt3). Die Arbeit gliedert sich in drei Kapitel, von denen sich die Kapitel I und n mit Theorie und Anwendungen befassen, während III eine Ausdehnung des QD-Algorithmus auf Vektoren behandelt. Schliesslich folgt ein Anhang über verwandte Methoden (insbesondere die LR-Transformation). Die Kapitel I, n, In sind einzeln bereits in der ZAMP erschienen'), doch ist zu beachten, dass I und n zum Teil erhebliche Veränderungen erfahren haben. 77 pp. Deutsch. Codice articolo 9783764303235
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 82 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 96338420
Quantità: 4 disponibili