0.1 Introduction These lecture notes describe a new development in the calculus of variations which is called Aubry-Mather-Theory. The starting point for the theoretical physicist Aubry was a model for the descrip tion of the motion of electrons in a two-dimensional crystal. Aubry investigated a related discrete variational problem and the corresponding minimal solutions. On the other hand, Mather started with a specific class of area-preserving annulus mappings, the so-called monotone twist maps. These maps appear in mechanics as Poincare maps. Such maps were studied by Birkhoff during the 1920s in several papers. In 1982, Mather succeeded to make essential progress in this field and to prove the existence of a class of closed invariant subsets which are now called Mather sets. His existence theorem is based again on a variational principle. Although these two investigations have different motivations, they are closely re lated and have the same mathematical foundation. We will not follow those ap proaches but will make a connection to classical results of Jacobi, Legendre, Weier strass and others from the 19th century. Therefore in Chapter I, we will put together the results of the classical theory which are the most important for us. The notion of extremal fields will be most relevant. In Chapter II we will investigate variational problems on the 2-dimensional torus. We will look at the corresponding global minimals as well as at the relation be tween minimals and extremal fields. In this way, we will be led to Mather sets.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 One-dimensional variational problems.- 1.1 Regularity of the minimals.- 1.2 Examples.- 1.3 The accessory variational problem.- 1.4 Extremal fields for n=1.- 1.5 The Hamiltonian formulation.- 1.6 Exercises to Chapter 1.- 2 Extremal fields and global minimals.- 2.1 Global extremal fields.- 2.2 An existence theorem.- 2.3 Properties of global minimals.- 2.4 A priori estimates and a compactness property.- 2.5 Ma for irrational a, Mather sets.- 2.6 Ma for rational a.- 2.7 Exercises to chapter II.- 3 Discrete Systems, Applications.- 3.1 Monotone twist maps.- 3.2 A discrete variational problem.- 3.3 Three examples.- 3.4 A second variational problem.- 3.5 Minimal geodesics on T2.- 3.6 Hedlund’s metric on T3.- 3.7 Exercises to chapter III.- A Remarks on the literature.- Additional Bibliography.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,95 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Antiquariat Bernhardt, Kassel, Germania
kartoniert. Condizione: Sehr gut. Zust: Gutes Exemplar. 132 Seiten, mit Abbildungen, Englisch 274g. Codice articolo 494018
Quantità: 1 disponibili
Da: Antiquariat Bookfarm, Löbnitz, Germania
Softcover. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-01421 9783764321857 Sprache: Englisch Gewicht in Gramm: 550. Codice articolo 2485286
Quantità: 1 disponibili
Da: Antiquariat Bookfarm, Löbnitz, Germania
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 49 MOS 9783764321857 Sprache: Englisch Gewicht in Gramm: 500. Codice articolo 2498105
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduction to the calculus of variations which leads directly to current research topicsCombines classical material with modern techniques and results0.1 Introduction These lecture notes describe a new development in the calculus of vari. Codice articolo 5278849
Quantità: Più di 20 disponibili
Da: La Casa de los Libros, Castellgali, B, Spagna
Condizione: Usado. Codice articolo 9783764321857
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -0.1 Introduction These lecture notes describe a new development in the calculus of variations which is called Aubry-Mather-Theory. The starting point for the theoretical physicist Aubry was a model for the descrip tion of the motion of electrons in a two-dimensional crystal. Aubry investigated a related discrete variational problem and the corresponding minimal solutions. On the other hand, Mather started with a specific class of area-preserving annulus mappings, the so-called monotone twist maps. These maps appear in mechanics as Poincare maps. Such maps were studied by Birkhoff during the 1920s in several papers. In 1982, Mather succeeded to make essential progress in this field and to prove the existence of a class of closed invariant subsets which are now called Mather sets. His existence theorem is based again on a variational principle. Although these two investigations have different motivations, they are closely re lated and have the same mathematical foundation. We will not follow those ap proaches but will make a connection to classical results of Jacobi, Legendre, Weier strass and others from the 19th century. Therefore in Chapter I, we will put together the results of the classical theory which are the most important for us. The notion of extremal fields will be most relevant. In Chapter II we will investigate variational problems on the 2-dimensional torus. We will look at the corresponding global minimals as well as at the relation be tween minimals and extremal fields. In this way, we will be led to Mather sets. 134 pp. Englisch. Codice articolo 9783764321857
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - 0.1 Introduction These lecture notes describe a new development in the calculus of variations which is called Aubry-Mather-Theory. The starting point for the theoretical physicist Aubry was a model for the descrip tion of the motion of electrons in a two-dimensional crystal. Aubry investigated a related discrete variational problem and the corresponding minimal solutions. On the other hand, Mather started with a specific class of area-preserving annulus mappings, the so-called monotone twist maps. These maps appear in mechanics as Poincare maps. Such maps were studied by Birkhoff during the 1920s in several papers. In 1982, Mather succeeded to make essential progress in this field and to prove the existence of a class of closed invariant subsets which are now called Mather sets. His existence theorem is based again on a variational principle. Although these two investigations have different motivations, they are closely re lated and have the same mathematical foundation. We will not follow those ap proaches but will make a connection to classical results of Jacobi, Legendre, Weier strass and others from the 19th century. Therefore in Chapter I, we will put together the results of the classical theory which are the most important for us. The notion of extremal fields will be most relevant. In Chapter II we will investigate variational problems on the 2-dimensional torus. We will look at the corresponding global minimals as well as at the relation be tween minimals and extremal fields. In this way, we will be led to Mather sets. Codice articolo 9783764321857
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -0.1 Introduction These lecture notes describe a new development in the calculus of variations which is called Aubry-Mather-Theory. The starting point for the theoretical physicist Aubry was a model for the descrip tion of the motion of electrons in a two-dimensional crystal. Aubry investigated a related discrete variational problem and the corresponding minimal solutions. On the other hand, Mather started with a specific class of area-preserving annulus mappings, the so-called monotone twist maps. These maps appear in mechanics as Poincare maps. Such maps were studied by Birkhoff during the 1920s in several papers. In 1982, Mather succeeded to make essential progress in this field and to prove the existence of a class of closed invariant subsets which are now called Mather sets. His existence theorem is based again on a variational principle. Although these two investigations have different motivations, they are closely re lated and have the same mathematical foundation. We will not follow those ap proaches but will make a connection to classical results of Jacobi, Legendre, Weier strass and others from the 19th century. Therefore in Chapter I, we will put together the results of the classical theory which are the most important for us. The notion of extremal fields will be most relevant. In Chapter II we will investigate variational problems on the 2-dimensional torus. We will look at the corresponding global minimals as well as at the relation be tween minimals and extremal fields. In this way, we will be led to Mather sets.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 144 pp. Englisch. Codice articolo 9783764321857
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783764321857_new
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 144. Codice articolo 26358304
Quantità: 4 disponibili