This book deals with asymptotic solutions of linear and nonlinear equa tions which decay as h ---+ 0 outside a neighborhood of certain points, curves and surfaces. Such solutions are almost everywhere well approximated by the functions cp(x) exp{iS(x)/h}, x E 1R3, where S(x) is complex, and ImS(x) ~ o. When the phase S(x) is real (ImS(x) = 0), the method for obtaining asymp totics of this type is known in quantum mechanics as the WKB-method. We preserve this terminology in the case ImS(x) ~ 0 and develop the method for a wide class of problems in mathematical physics. Asymptotics of this type were constructed recently for many linear prob lems of mathematical physics; certain specific formulas were obtained by differ ent methods (V. M. Babich [5 -7], V. P. Lazutkin [76], A. A. Sokolov, 1. M. Ter nov [113], J. Schwinger [107, 108], E. J. Heller [53], G. A. Hagedorn [50, 51], V. N. Bayer, V. M. Katkov [21], N. A. Chernikov [35] and others). However, a general (Hamiltonian) formalism for obtaining asymptotics of this type is clearly required; this state of affairs is expressed both in recent mathematical and physical literature. For example, the editors of the collected volume [106] write in its preface: "One can hope that in the near future a computational pro cedure for fields with complex phase, similar to the usual one for fields with real phase, will be developed.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
I. Equations and problems of narrow beam mechanics.- II. Hamiltonian formalism of narrow beams.- III. Approximate solutions of the nonstationary transport equation.- IV. Stationary Hamilton-Jacobi and transport equations.- V. Complex Hamiltonian formalism of compact (cyclic) beams.- VI. Canonical operators on Lagrangian manifolds with complex germ and their applications to spectral problems of quantum mechanics.- References.- Appendix A Complex germ generated by a linear connection.- Appendix B Asymptotic solutions with pure imaginary phase and the tunnel equation.- Appendix C Analytic asymptotics of oscillatory decreasing type (heuristic considerations).
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 16,00 per la spedizione da Germania a U.S.A.
Destinazione, tempi e costiGRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Antiquariat Bookfarm, Löbnitz, Germania
Hardcover. VII, 300 S. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03762 3764350881 Sprache: Englisch Gewicht in Gramm: 550. Codice articolo 2489688
Quantità: 1 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-342616
Quantità: 1 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-157822
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Apr0316110058736
Quantità: Più di 20 disponibili
Da: Antiquariat Bernhardt, Kassel, Germania
Karton. Condizione: Sehr gut. Zust: Gutes Exemplar. 300 S. Englisch 648g. Codice articolo 483909
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: Used. pp. 316. Codice articolo 263091227
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 316 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Codice articolo 5805252
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book deals with asymptotic solutions of linear and nonlinear equa tions which decay as h ---+ 0 outside a neighborhood of certain points, curves and surfaces. Such solutions are almost everywhere well approximated by the functions cp(x) exp{iS(x)/h}, x E 1R3, where S(x) is complex, and ImS(x) ~ o. When the phase S(x) is real (ImS(x) = 0), the method for obtaining asymp totics of this type is known in quantum mechanics as the WKB-method. We preserve this terminology in the case ImS(x) ~ 0 and develop the method for a wide class of problems in mathematical physics. Asymptotics of this type were constructed recently for many linear prob lems of mathematical physics; certain specific formulas were obtained by differ ent methods (V. M. Babich [5 -7], V. P. Lazutkin [76], A. A. Sokolov, 1. M. Ter nov [113], J. Schwinger [107, 108], E. J. Heller [53], G. A. Hagedorn [50, 51], V. N. Bayer, V. M. Katkov [21], N. A. Chernikov [35] and others). However, a general (Hamiltonian) formalism for obtaining asymptotics of this type is clearly required; this state of affairs is expressed both in recent mathematical and physical literature. For example, the editors of the collected volume [106] write in its preface: 'One can hope that in the near future a computational pro cedure for fields with complex phase, similar to the usual one for fields with real phase, will be developed. 304 pp. Englisch. Codice articolo 9783764350888
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783764350888_new
Quantità: Più di 20 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 316. Codice articolo 183091217
Quantità: 1 disponibili