This is the award-winning monograph of the Sunyer i Balaguer Prize 1999. The book presents recently discovered connections between Artin’s braid groups and left self-distributive systems, which are sets equipped with a binary operation satisfying the identity x(yz) = (xy)(xz). Although not a comprehensive course, the exposition is self-contained, and many basic results are established. In particular, the first chapters include a thorough algebraic study of Artin’s braid groups.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
"In this book...P. Dehornoy has accomplished with remarkable success the task of presenting the area of interaction where Artin’s braid groups, left self-distributive systems (LD-systems) and set theory come together in a rigorous and clear manner...The exposition is self-contained and there are no prerequisites. A number of basic results about braid groups, self-distributive algebras, and set theory are provided."
--Mathematical Reviews
A: Ordering the Braids.- I. Braids vs. Self-Distributive Systems.- I.1 Braid Groups.- I.2 Braid Colourings.- I.3 A Self-Distributive Operation on Braids.- I.4 Extended Braids.- I.5 Notes.- II. Word Reversing.- II.1 Complemented Presentations.- II.2 Coherent Complements.- II.3 Garside Elements.- II.4 The Case of Braids.- II.5 Double Reversing.- II.6 Notes.- III. The Braid Order.- III.1 More about Braid Colourings.- III.2 The Linear Ordering of Braids.- III.3 Handle Reduction.- III.4 Alternative Definitions.- III.5 Notes.- IV. The Order on Positive Braids.- IV.1 The Case of Three Strands.- IV.2 The General Case.- IV.3 Applications.- IV.4 Notes.- IV.Appendix: Rank Tables.- B: Free LD-systems.- V. Orders on Free LD-systems.- V.1 Free Systems.- V.2 The Absorption Property.- V.3 The Confluence Property.- V.4 The Comparison Property.- V.5 Canonical Orders.- V.6 Applications.- V.7 Notes.- VI. Normal Forms.- VI.1 Terms as Trees.- VI.2 The Cuts of a Term.- VI.3 The O-Normal Form.- VI.4 The Right Normal Form.- VI.5 Applications.- VI.6 Notes.- VI.Appendix: The First Codes.- VII. The Geometry Monoid.- VII.1 Left Self-Distributivity Operators.- VII.2 Relations in the Geometry Monoid.- VII.3 Syntactic Proofs.- VII.4 Cuts and Collapsing.- VII.5 Notes.- VIII. The Group of Left Self-Distributivity.- VIII.1 The Group GLD and the Monoid MLD.- VIII.2 The Blueprint of a Term.- VIII.3 Order Properties in GLD.- VIII.4 Parabolic Subgroups.- VIII.5 Simple Elements in MLD.- VIII.6 Notes.- IX. Progressive Expansions.- IX.1 The Polish Algorithm.- IX.2 The Content of a Term.- IX.3 Perfect Terms.- IX.4 Convergence Results.- IX.5 Effective Decompositions.- IX.6 The Embedding Conjecture.- IX.7 Notes.- IX.Appendix: Other Algebraic Identities.- C: Other LD-Systems.- X. More LD-Systems.- X.1 The Laver Tables.- X.2 Finite Monogenic LD-systems.- X.3 Multi-LD-Systems.- X.4 Idempotent LD-systems.- X.5 Two-Sided Self-Distributivity.- X.6 Notes.- X.Appendix: The First Laver Tables.- XI. LD-Monoids.- XI.1 LD-Monoids.- XI.2 Completion of an LD-System.- XI.3 Free LD-Monoids.- XI.4 Orders on Free LD-Monoids.- XI.5 Extended Braids.- XI.6 Notes.- XII. Elementary Embeddings.- XII.1 Large Cardinals.- XII.2 Elementary Embeddings.- XII.3 Operations on Elementary Embeddings.- XII.4 Finite Quotients.- XII.5 Notes.- XIII. More about the Laver Tables.- XIII.1 A Dictionary.- XIII.2 Computation of Rows.- XIII.3 Fast Growing Functions.- XIII.4 Lower Bounds.- XIII.5 Notes.- List of Symbols.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Phatpocket Limited, Waltham Abbey, HERTS, Regno Unito
Condizione: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Codice articolo Z1-M-009-02200
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Apr0316110058945
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 920343-n
Quantità: Più di 20 disponibili
Da: Antiquariat Bernhardt, Kassel, Germania
Karton. Condizione: Sehr gut. Zust: Gutes Exemplar. 623, Seiten, mit Abbildungen, Englisch 1230g. Codice articolo 494634
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783764363437_new
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 920343
Quantità: Più di 20 disponibili
Da: Antiquariat Bookfarm, Löbnitz, Germania
Hardcover. XIX, 623 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-04294 9783764363437 Sprache: Englisch Gewicht in Gramm: 1150. Codice articolo 2490524
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 920343-n
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The aim of this book is to present recently discovered connections between Artin's braid groups En and left self-distributive systems (also called LD systems), which are sets equipped with a binary operation satisfying the left self-distributivity identity x(yz) = (xy)(xz). (LD) Such connections appeared in set theory in the 1980s and led to the discovery in 1991 of a left invariant linear order on the braid groups. Braids and self-distributivity have been studied for a long time. Braid groups were introduced in the 1930s by E. Artin, and they have played an increas ing role in mathematics in view of their connection with many fields, such as knot theory, algebraic combinatorics, quantum groups and the Yang-Baxter equation, etc. LD-systems have also been considered for several decades: early examples are mentioned in the beginning of the 20th century, and the first general results can be traced back to Belousov in the 1960s. The existence of a connection between braids and left self-distributivity has been observed and used in low dimensional topology for more than twenty years, in particular in work by Joyce, Brieskorn, Kauffman and their students. Brieskorn mentions that the connection is already implicit in (Hurwitz 1891). The results we shall concentrate on here rely on a new approach developed in the late 1980s and originating from set theory. 623 pp. Englisch. Codice articolo 9783764363437
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Codice articolo 5279345
Quantità: Più di 20 disponibili