Cet ouvrage s'inscrit dans le cadre des familles exponentielles naturelles. La première partie décrit les familles exponentielles naturelles et leurs fonctions variance. En particulier, nous rappelons les propriétés analytiques et symétriques des fonctions variance. La deuxième partie étudie le problème de la caractérisation des fonctions variance sur ]0, +\infty[. Ce résultat consiste à déterminer les conditions nécessaires et suffisantes d'une fonction V définie sur un intervalle ouvert pour qu'elle soit une fonction variance d'une certaine FEN en utilisant la notion des fonctions absolument monotones. L'extension de ce résultat au cas multidimensionnel et plus précisément au cas du cône des matrices symétriques définies positives semble être délicate. C'est ce que nous mettons en évidence dans le troisième chapitre où nous expliciterons les expressions des moments de lois de Wishart.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Cet ouvrage s'inscrit dans le cadre des familles exponentielles naturelles. La première partie décrit les familles exponentielles naturelles et leurs fonctions variance. En particulier, nous rappelons les propriétés analytiques et symétriques des fonctions variance. La deuxième partie étudie le problème de la caractérisation des fonctions variance sur ]0, +infty[. Ce résultat consiste à déterminer les conditions nécessaires et suffisantes d'une fonction V définie sur un intervalle ouvert pour qu'elle soit une fonction variance d'une certaine FEN en utilisant la notion des fonctions absolument monotones. L'extension de ce résultat au cas multidimensionnel et plus précisément au cas du cône des matrices symétriques définies positives semble être délicate. C'est ce que nous mettons en évidence dans le troisième chapitre où nous expliciterons les expressions des moments de lois de Wishart. 64 pp. Französisch. Codice articolo 9783841731265
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Codice articolo 385829103
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Cet ouvrage s'inscrit dans le cadre des familles exponentielles naturelles. La première partie décrit les familles exponentielles naturelles et leurs fonctions variance. En particulier, nous rappelons les propriétés analytiques et symétriques des fonctions variance. La deuxième partie étudie le problème de la caractérisation des fonctions variance sur ]0, +infty[. Ce résultat consiste à déterminer les conditions nécessaires et suffisantes d'une fonction V définie sur un intervalle ouvert pour qu'elle soit une fonction variance d'une certaine FEN en utilisant la notion des fonctions absolument monotones. L'extension de ce résultat au cas multidimensionnel et plus précisément au cas du cône des matrices symétriques définies positives semble être délicate. C'est ce que nous mettons en évidence dans le troisième chapitre où nous expliciterons les expressions des moments de lois de Wishart.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 64 pp. Französisch. Codice articolo 9783841731265
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Cet ouvrage s'inscrit dans le cadre des familles exponentielles naturelles. La première partie décrit les familles exponentielles naturelles et leurs fonctions variance. En particulier, nous rappelons les propriétés analytiques et symétriques des fonctions variance. La deuxième partie étudie le problème de la caractérisation des fonctions variance sur ]0, +infty[. Ce résultat consiste à déterminer les conditions nécessaires et suffisantes d'une fonction V définie sur un intervalle ouvert pour qu'elle soit une fonction variance d'une certaine FEN en utilisant la notion des fonctions absolument monotones. L'extension de ce résultat au cas multidimensionnel et plus précisément au cas du cône des matrices symétriques définies positives semble être délicate. C'est ce que nous mettons en évidence dans le troisième chapitre où nous expliciterons les expressions des moments de lois de Wishart. Codice articolo 9783841731265
Quantità: 1 disponibili