Patient-specific finite element modelling of bone is a promising method for surgical planning, implant design and the prediction of bone remodelling or fracture risks, yet the assignment of material properties is challenging. Bone is a complicated structure with direction-dependent, inhomogeneous material properties, influenced by compositional, geometrical and architectural aspects. This volume focuses on a density-based assignment of orthotropic bone properties. Elasticity-density relationships in homogenized femoral zones were examined to evaluate the orthotropic density-dependence of the nine elastic material constants locally. Cortical bone samples were tested in compression and torsion tests using videoextensometry to determine the elastic constants. The elastic properties of cancellous bone were predicted by micro finite element analysis. All determined constants were correlated to the radiological bone mineral density of each sample, which was determined by quantitative computed tomography. The trabecular eigensystem was investigated for each cancellous zone to assign the mean directionality of trabecular fabric. The results can be beneficial for density-based orthotropic material assignment in femoral patient-specific finite element models.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Patient-specific finite element analysis of bone is a promising method for surgical planning, implant design and the prediction of bone remodelling or fracture risks, yet the assignment of material properties is challenging. Bone is a complicated structure with direction-dependent, inhomogeneous material properties, influenced by compositional, geometrical and architectural aspects. This volume focuses on a density-based assignment of orthotropic bone properties. Elasticity-density relationships in homogenized femoral zones were examined to evaluate the orthotropic density-dependence of the nine elastic material constants locally. Cortical bone samples were tested in compression and torsion tests using videoextensometry to determine the elastic constants. The elastic properties of cancellous bone were predicted by micro finite element analysis. All determined constants were correlated to the radiological bone mineral density of each sample, which was determined by quantitative computed tomography. The trabecular eigensystem was investigated for each cancellous zone to assign the mean directionality of trabecular fabric. The results can be beneficial for density-based orthotropic material assignment in femoral patient-specific finite element models. Englisch. Codice articolo 9783945954553
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Codice articolo 269809838
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -Patient-specific finite element modelling of bone is a promising method for surgical planning, implant design and the prediction of bone remodelling or fracture risks, yet the assignment of material properties is challenging. Bone is a complicated structure with direction-dependent, inhomogeneous material properties, influenced by compositional, geometrical and architectural aspects. This volume focuses on a density-based assignment of orthotropic bone properties. Elasticity-density relationships in homogenized femoral zones were examined to evaluate the orthotropic density-dependence of the nine elastic material constants locally. Cortical bone samples were tested in compression and torsion tests using videoextensometry to determine the elastic constants. The elastic properties of cancellous bone were predicted by micro finite element analysis. All determined constants were correlated to the radiological bone mineral density of each sample, which was determined by quantitative computed tomography. The trabecular eigensystem was investigated for each cancellous zone to assign the mean directionality of trabecular fabric. The results can be beneficial for density-based orthotropic material assignment in femoral patient-specific finite element models.BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt 240 pp. Englisch. Codice articolo 9783945954553
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Patient-specific finite element analysis of bone is a promising method for surgical planning, implant design and the prediction of bone remodelling or fracture risks, yet the assignment of material properties is challenging. Bone is a complicated structure with direction-dependent, inhomogeneous material properties, influenced by compositional, geometrical and architectural aspects. This volume focuses on a density-based assignment of orthotropic bone properties. Elasticity-density relationships in homogenized femoral zones were examined to evaluate the orthotropic density-dependence of the nine elastic material constants locally. Cortical bone samples were tested in compression and torsion tests using videoextensometry to determine the elastic constants. The elastic properties of cancellous bone were predicted by micro finite element analysis. All determined constants were correlated to the radiological bone mineral density of each sample, which was determined by quantitative computed tomography. The trabecular eigensystem was investigated for each cancellous zone to assign the mean directionality of trabecular fabric. The results can be beneficial for density-based orthotropic material assignment in femoral patient-specific finite element models. Codice articolo 9783945954553
Quantità: 1 disponibili
Da: preigu, Osnabrück, Germania
Buch. Condizione: Neu. Elastic Properties of the Human Femur | Local Anisotropic Material Laws for Patient-Specific Modelling | Annette Bretin | Buch | 240 S. | Englisch | 2019 | Infinite Science GmbH | EAN 9783945954553 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu Print on Demand. Codice articolo 115368141
Quantità: 5 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | Patient-specific finite element modelling of bone is a promising method for surgical planning, implant design and the prediction of bone remodelling or fracture risks, yet the assignment of material properties is challenging. Bone is a complicated structure with direction-dependent, inhomogeneous material properties, influenced by compositional, geometrical and architectural aspects. This volume focuses on a density-based assignment of orthotropic bone properties. Elasticity-density relationships in homogenized femoral zones were examined to evaluate the orthotropic density-dependence of the nine elastic material constants locally. Cortical bone samples were tested in compression and torsion tests using videoextensometry to determine the elastic constants. The elastic properties of cancellous bone were predicted by micro finite element analysis. All determined constants were correlated to the radiological bone mineral density of each sample, which was determined by quantitative computed tomography. The trabecular eigensystem was investigated for each cancellous zone to assign the mean directionality of trabecular fabric. The results can be beneficial for density-based orthotropic material assignment in femoral patient-specific finite element models. Codice articolo 33573852/1
Quantità: 2 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | Patient-specific finite element modelling of bone is a promising method for surgical planning, implant design and the prediction of bone remodelling or fracture risks, yet the assignment of material properties is challenging. Bone is a complicated structure with direction-dependent, inhomogeneous material properties, influenced by compositional, geometrical and architectural aspects. This volume focuses on a density-based assignment of orthotropic bone properties. Elasticity-density relationships in homogenized femoral zones were examined to evaluate the orthotropic density-dependence of the nine elastic material constants locally. Cortical bone samples were tested in compression and torsion tests using videoextensometry to determine the elastic constants. The elastic properties of cancellous bone were predicted by micro finite element analysis. All determined constants were correlated to the radiological bone mineral density of each sample, which was determined by quantitative computed tomography. The trabecular eigensystem was investigated for each cancellous zone to assign the mean directionality of trabecular fabric. The results can be beneficial for density-based orthotropic material assignment in femoral patient-specific finite element models. Codice articolo 33573852/2
Quantità: 2 disponibili