In the context of Lie groups, Control Theory is primarily concerned with the study of invariant, linear, bilinear and affine control systems. For invariant systems - considering that the control functions are piecewise constant - the solutions of the system has a well known and good description. This brings us to the first objective of this work: to give an explicit description of the solution curve for the other systems under the assumption that the linear vector fields commute. These solutions are obtained as the integral curve of a convenient invariant vector field on a semidirect product of a Lie group with an Euclidean space. In particular, we consider the case where the derivations associated to the linear vector fields are inner (which occurs, for example, in every semi simple Lie algebra), in which case the solutions are described in a considerably simpler and more elegant way. Thenceforth, our achievements are applied to obtain new propositions. The results range from expressions that relate the controllability of linear/affine control systems with associated invariant ones to the study of system semiconjugation by Lie group homomorphisms and properties of stability sets.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 10,40 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9786202923934_new
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9786202923934
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 68 pp. Englisch. Codice articolo 9786202923934
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -In the context of Lie groups, Control Theory is primarily concerned with the study of invariant, linear, bilinear and affine control systems. For invariant systems - considering that the control functions are piecewise constant - the solutions of the system has a well known and good description. This brings us to the first objective of this work: to give an explicit description of the solution curve for the other systems under the assumption that the linear vector fields commute. These solutions are obtained as the integral curve of a convenient invariant vector field on a semidirect product of a Lie group with an Euclidean space. In particular, we consider the case where the derivations associated to the linear vector fields are inner (which occurs, for example, in every semi simple Lie algebra), in which case the solutions are described in a considerably simpler and more elegant way. Thenceforth, our achievements are applied to obtain new propositions. The results range from expressions that relate the controllability of linear/affine control systems with associated invariant ones to the study of system semiconjugation by Lie group homomorphisms and properties of stability sets.Books on Demand GmbH, Überseering 33, 22297 Hamburg 68 pp. Englisch. Codice articolo 9786202923934
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In the context of Lie groups, Control Theory is primarily concerned with the study of invariant, linear, bilinear and affine control systems. For invariant systems - considering that the control functions are piecewise constant - the solutions of the system has a well known and good description. This brings us to the first objective of this work: to give an explicit description of the solution curve for the other systems under the assumption that the linear vector fields commute. These solutions are obtained as the integral curve of a convenient invariant vector field on a semidirect product of a Lie group with an Euclidean space. In particular, we consider the case where the derivations associated to the linear vector fields are inner (which occurs, for example, in every semi simple Lie algebra), in which case the solutions are described in a considerably simpler and more elegant way. Thenceforth, our achievements are applied to obtain new propositions. The results range from expressions that relate the controllability of linear/affine control systems with associated invariant ones to the study of system semiconjugation by Lie group homomorphisms and properties of stability sets. Codice articolo 9786202923934
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26403920935
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 409266168
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18403920941
Quantità: 4 disponibili