The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics. <div><p style="text-align: justify;">The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics. </p></div>
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26396035690
Quantitą: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 401390005
Quantitą: 4 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics. The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics. 76 pp. Englisch. Codice articolo 9786203925395
Quantitą: 2 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18396035680
Quantitą: 4 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Codice articolo 482758039
Quantitą: Pił di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics.Books on Demand GmbH, Überseering 33, 22297 Hamburg 76 pp. Englisch. Codice articolo 9786203925395
Quantitą: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics. The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics. Codice articolo 9786203925395
Quantitą: 1 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Fast Kernel Expansions with Applications to CV and DL. Part 1b | Carnegie Mellon. City University of Hong Kong | I. de Zarzą | Taschenbuch | Englisch | 2021 | LAP LAMBERT Academic Publishing | EAN 9786203925395 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Codice articolo 120290806
Quantitą: 5 disponibili