Articoli correlati a Fast Kernel Expansions with Applications to CV and...

Fast Kernel Expansions with Applications to CV and DL. Part 1b: Carnegie Mellon. City University of Hong Kong - Brossura

 
9786203925395: Fast Kernel Expansions with Applications to CV and DL. Part 1b: Carnegie Mellon. City University of Hong Kong
  • EditoreLAP LAMBERT Academic Publishing
  • Data di pubblicazione2021
  • ISBN 10 620392539X
  • ISBN 13 9786203925395
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine76

EUR 9,95 per la spedizione da Germania a U.S.A.

Destinazione, tempi e costi

Risultati della ricerca per Fast Kernel Expansions with Applications to CV and...

Foto dell'editore

De Zarzą, I.
ISBN 10: 620392539X ISBN 13: 9786203925395
Nuovo Brossura
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND. Codice articolo 18396035680

Contatta il venditore

Compra nuovo

EUR 38,65
Convertire valuta
Spese di spedizione: EUR 9,95
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantitą: 4 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

I. de Zarzą
ISBN 10: 620392539X ISBN 13: 9786203925395
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics. The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics. 76 pp. Englisch. Codice articolo 9786203925395

Contatta il venditore

Compra nuovo

EUR 32,90
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantitą: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

I. de Zarzą
ISBN 10: 620392539X ISBN 13: 9786203925395
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics. The scope of the manuscript is to give a review of kernel expansions, FOURIER features and fast numerical code in statistical learning. For this purpose we introduce a library for approximating kernel expansions, which enables the use of kernel methods in large-scale datasets. It is well-known that kernel methods as originally proposed are computational costly for big data, we explain here the theory needed to enable the use of non-linear features in log-linear time. This approximation is based on FOURIER features by the use of the Walsh Hadamard. A SIMD implementation of the algorithm is described. Applications to Computer Vision (CV) and Deep Learning (DL) are enclosed with practical hints on the topic. Specifically, we give a primer on facial recognition and a foundation for the use of Vision in Robotics. Codice articolo 9786203925395

Contatta il venditore

Compra nuovo

EUR 34,42
Convertire valuta
Spese di spedizione: EUR 28,65
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantitą: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

I. de Zarzą
ISBN 10: 620392539X ISBN 13: 9786203925395
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 482758039

Contatta il venditore

Compra nuovo

EUR 29,02
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantitą: Pił di 20 disponibili

Aggiungi al carrello