Articoli correlati a Analyse der Klassifizierung für unausgewogene Daten

Analyse der Klassifizierung für unausgewogene Daten - Brossura

 
9786206345428: Analyse der Klassifizierung für unausgewogene Daten

Sinossi

Überall auf der Welt werden enorme Datenmengen gesammelt und in Datenbanken gespeichert. Diese Daten werden gebündelt und nehmen jedes Jahr zu. Das Extrahieren von Informationen, die in solchen Datenbanken verborgen sind, und das Klassifizieren der extrahierten Informationen sind die wichtigsten Aufgaben beim Data Mining. Wenn solche Datensätze unausgewogen sind, wird es schwierig, sie zu verarbeiten. Denn die Vorhersage der Zukunft ist eine der grundlegenden Aufgaben im Data Mining. Die Arbeit mit unausgewogenen Datensätzen zur Vorhersage der möglichen Ergebnisse ist eine sehr mühsame Aufgabe. Ein Datensatz ist unausgewogen, wenn er nicht korrekt klassifiziert ist, wenn eine Klasse mehr Instanzen enthält als andere. Sie werden oft als positive Klasse (Minderheit) und negative Klasse (Mehrheit) dargestellt. Die Klasse mit der geringeren Anzahl von Stichproben wird als Minderheitsklasse bezeichnet, die mit der höheren Anzahl als Mehrheitsklasse. Ein unausgewogener Datensatz verursacht viele schwerwiegende Probleme beim Data Mining, da der Standard-Klassifizierungsalgorithmus den Datensatz meist als ausgewogen betrachtet, was wiederum zu einer partiellen Bevorzugung der Mehrheitsklasse führt. Bei Anwendungen wie der medizinischen Diagnose hat dies sehr schwerwiegende Auswirkungen. Daher ist ein ausgeglichener Datensatz für viele Echtzeitanwendungen entscheidend.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Analyse der Klassifizierung für unausgewogene Daten

Immagini fornite dal venditore

Dharmendra Singh Rajput|S. Sinduja
Editore: Verlag Unser Wissen, 2023
ISBN 10: 6206345424 ISBN 13: 9786206345428
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Rajput Dharmendra SinghDharmendra Singh Rajput - Ph.D. (Januar 2015) auf dem Gebiet des Document Clustering vom National Institute of Technology Bhopal, Indien. Hat mehr als 6 Jahre Erfahrung in Lehre, Forschung und Industrie. Derzei. Codice articolo 1043584363

Contatta il venditore

Compra nuovo

EUR 35,90
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dharmendra Singh Rajput
ISBN 10: 6206345424 ISBN 13: 9786206345428
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Überall auf der Welt werden enorme Datenmengen gesammelt und in Datenbanken gespeichert. Diese Daten werden gebündelt und nehmen jedes Jahr zu. Das Extrahieren von Informationen, die in solchen Datenbanken verborgen sind, und das Klassifizieren der extrahierten Informationen sind die wichtigsten Aufgaben beim Data Mining. Wenn solche Datensätze unausgewogen sind, wird es schwierig, sie zu verarbeiten. Denn die Vorhersage der Zukunft ist eine der grundlegenden Aufgaben im Data Mining. Die Arbeit mit unausgewogenen Datensätzen zur Vorhersage der möglichen Ergebnisse ist eine sehr mühsame Aufgabe. Ein Datensatz ist unausgewogen, wenn er nicht korrekt klassifiziert ist, wenn eine Klasse mehr Instanzen enthält als andere. Sie werden oft als positive Klasse (Minderheit) und negative Klasse (Mehrheit) dargestellt. Die Klasse mit der geringeren Anzahl von Stichproben wird als Minderheitsklasse bezeichnet, die mit der höheren Anzahl als Mehrheitsklasse. Ein unausgewogener Datensatz verursacht viele schwerwiegende Probleme beim Data Mining, da der Standard-Klassifizierungsalgorithmus den Datensatz meist als ausgewogen betrachtet, was wiederum zu einer partiellen Bevorzugung der Mehrheitsklasse führt. Bei Anwendungen wie der medizinischen Diagnose hat dies sehr schwerwiegende Auswirkungen. Daher ist ein ausgeglichener Datensatz für viele Echtzeitanwendungen entscheidend. 72 pp. Deutsch. Codice articolo 9786206345428

Contatta il venditore

Compra nuovo

EUR 35,90
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dharmendra Singh Rajput
Editore: Verlag Unser Wissen, 2023
ISBN 10: 6206345424 ISBN 13: 9786206345428
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Überall auf der Welt werden enorme Datenmengen gesammelt und in Datenbanken gespeichert. Diese Daten werden gebündelt und nehmen jedes Jahr zu. Das Extrahieren von Informationen, die in solchen Datenbanken verborgen sind, und das Klassifizieren der extrahierten Informationen sind die wichtigsten Aufgaben beim Data Mining. Wenn solche Datensätze unausgewogen sind, wird es schwierig, sie zu verarbeiten. Denn die Vorhersage der Zukunft ist eine der grundlegenden Aufgaben im Data Mining. Die Arbeit mit unausgewogenen Datensätzen zur Vorhersage der möglichen Ergebnisse ist eine sehr mühsame Aufgabe. Ein Datensatz ist unausgewogen, wenn er nicht korrekt klassifiziert ist, wenn eine Klasse mehr Instanzen enthält als andere. Sie werden oft als positive Klasse (Minderheit) und negative Klasse (Mehrheit) dargestellt. Die Klasse mit der geringeren Anzahl von Stichproben wird als Minderheitsklasse bezeichnet, die mit der höheren Anzahl als Mehrheitsklasse. Ein unausgewogener Datensatz verursacht viele schwerwiegende Probleme beim Data Mining, da der Standard-Klassifizierungsalgorithmus den Datensatz meist als ausgewogen betrachtet, was wiederum zu einer partiellen Bevorzugung der Mehrheitsklasse führt. Bei Anwendungen wie der medizinischen Diagnose hat dies sehr schwerwiegende Auswirkungen. Daher ist ein ausgeglichener Datensatz für viele Echtzeitanwendungen entscheidend. Codice articolo 9786206345428

Contatta il venditore

Compra nuovo

EUR 35,90
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dharmendra Singh Rajput
ISBN 10: 6206345424 ISBN 13: 9786206345428
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -Überall auf der Welt werden enorme Datenmengen gesammelt und in Datenbanken gespeichert. Diese Daten werden gebündelt und nehmen jedes Jahr zu. Das Extrahieren von Informationen, die in solchen Datenbanken verborgen sind, und das Klassifizieren der extrahierten Informationen sind die wichtigsten Aufgaben beim Data Mining. Wenn solche Datensätze unausgewogen sind, wird es schwierig, sie zu verarbeiten. Denn die Vorhersage der Zukunft ist eine der grundlegenden Aufgaben im Data Mining. Die Arbeit mit unausgewogenen Datensätzen zur Vorhersage der möglichen Ergebnisse ist eine sehr mühsame Aufgabe. Ein Datensatz ist unausgewogen, wenn er nicht korrekt klassifiziert ist, wenn eine Klasse mehr Instanzen enthält als andere. Sie werden oft als positive Klasse (Minderheit) und negative Klasse (Mehrheit) dargestellt. Die Klasse mit der geringeren Anzahl von Stichproben wird als Minderheitsklasse bezeichnet, die mit der höheren Anzahl als Mehrheitsklasse. Ein unausgewogener Datensatz verursacht viele schwerwiegende Probleme beim Data Mining, da der Standard-Klassifizierungsalgorithmus den Datensatz meist als ausgewogen betrachtet, was wiederum zu einer partiellen Bevorzugung der Mehrheitsklasse führt. Bei Anwendungen wie der medizinischen Diagnose hat dies sehr schwerwiegende Auswirkungen. Daher ist ein ausgeglichener Datensatz für viele Echtzeitanwendungen entscheidend.Books on Demand GmbH, Überseering 33, 22297 Hamburg 72 pp. Deutsch. Codice articolo 9786206345428

Contatta il venditore

Compra nuovo

EUR 35,90
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dharmendra Singh Rajput
Editore: Verlag Unser Wissen, 2023
ISBN 10: 6206345424 ISBN 13: 9786206345428
Nuovo Taschenbuch

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Analyse der Klassifizierung für unausgewogene Daten | Dharmendra Singh Rajput (u. a.) | Taschenbuch | Paperback | 72 S. | Deutsch | 2023 | Verlag Unser Wissen | EAN 9786206345428 | Verantwortliche Person für die EU: Verlag Unser Wissen, Brivibas Gatve 197, 1039 RIGA, LITAUEN, customerservice[at]vdm-vsg[dot]de | Anbieter: preigu. Codice articolo 127406352

Contatta il venditore

Compra nuovo

EUR 35,90
Convertire valuta
Spese di spedizione: EUR 45,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello