Gene expression data analysis is one of the most valuable and relatively mature application areas of big data. This book is a work on cancer gene expression data mining and machine learning algorithms, comprehensively and systematically explaining the models, algorithms, platforms, and examples of cancer gene expression data learning. The book consists of 10 chapters and is divided into 4 parts. The first part includes chapters 1-3, which introduce the basic knowledge of cancer gene expression data, preprocessing techniques, and commonly used data analysis platforms; Part 2 (Chapters 4-6) introduces key gene screening, class imbalance data sampling, and cancer pathogenic gene prediction methods; Part 3 (Chapters 7-8) is about sequence based gene association rules and local pattern mining techniques. Chapter 7 is about gene association analysis mining frequent atomic sequences, and Chapter 8 is about mining and querying order-preserving submatrixes; Part 4 (Chapters 9-10) is the classification and novel class recognition algorithm for cancer gene expression data.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Gene expression data analysis is one of the most valuable and relatively mature application areas of big data. This book is a work on cancer gene expression data mining and machine learning algorithms, comprehensively and systematically explaining the model. Codice articolo 1354082796
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 264 pp. Englisch. Codice articolo 9786206770572
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Gene expression data analysis is one of the most valuable and relatively mature application areas of big data. This book is a work on cancer gene expression data mining and machine learning algorithms, comprehensively and systematically explaining the models, algorithms, platforms, and examples of cancer gene expression data learning. The book consists of 10 chapters and is divided into 4 parts. The first part includes chapters 1-3, which introduce the basic knowledge of cancer gene expression data, preprocessing techniques, and commonly used data analysis platforms; Part 2 (Chapters 4-6) introduces key gene screening, class imbalance data sampling, and cancer pathogenic gene prediction methods; Part 3 (Chapters 7-8) is about sequence based gene association rules and local pattern mining techniques. Chapter 7 is about gene association analysis mining frequent atomic sequences, and Chapter 8 is about mining and querying order-preserving submatrixes; Part 4 (Chapters 9-10) is the classification and novel class recognition algorithm for cancer gene expression data.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 264 pp. Englisch. Codice articolo 9786206770572
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Gene expression data analysis is one of the most valuable and relatively mature application areas of big data. This book is a work on cancer gene expression data mining and machine learning algorithms, comprehensively and systematically explaining the models, algorithms, platforms, and examples of cancer gene expression data learning. The book consists of 10 chapters and is divided into 4 parts. The first part includes chapters 1-3, which introduce the basic knowledge of cancer gene expression data, preprocessing techniques, and commonly used data analysis platforms; Part 2 (Chapters 4-6) introduces key gene screening, class imbalance data sampling, and cancer pathogenic gene prediction methods; Part 3 (Chapters 7-8) is about sequence based gene association rules and local pattern mining techniques. Chapter 7 is about gene association analysis mining frequent atomic sequences, and Chapter 8 is about mining and querying order-preserving submatrixes; Part 4 (Chapters 9-10) is the classification and novel class recognition algorithm for cancer gene expression data. Codice articolo 9786206770572
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26400923345
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 395453710
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18400923355
Quantità: 4 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
paperback. Condizione: New. New. book. Codice articolo ERICA80062067705756
Quantità: 1 disponibili