Maintaining accuracy in load balancing using metaheuristics poses challenges despite recent hybrid approaches. Optimized metaheuristic methods are employed to balance loads in the cloud efficiently. Multi-objective Quality of Service (QoS) metrics like reduced SLA violations, makespan, high throughput, and low energy consumption are crucial. Cloud applications, being computation-intensive, demand effective load balancing to prevent poor solutions due to exponential memory growth.To enhance load balancing in cloud computing, a new hybrid model is proposed, performing file classification using Filetype formatting. Three algorithms—Ant Colony Optimization using Filetype Formatting (ACOFTF), Data Format Classification using Support Vector Machine (DFC-SVM), and Datatype Formatting DFTF/DTF—are developed.Overall, the proposed hybrid metaheuristic approaches offer promising solutions for enhancing load balancing in cloud computing environments.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Maintaining accuracy in load balancing using metaheuristics poses challenges despite recent hybrid approaches. Optimized metaheuristic methods are employed to balance loads in the cloud efficiently. Multi-objective Quality of Service (QoS) metrics like redu. Codice articolo 1652553430
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 356 pp. Englisch. Codice articolo 9786207487295
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Maintaining accuracy in load balancing using metaheuristics poses challenges despite recent hybrid approaches. Optimized metaheuristic methods are employed to balance loads in the cloud efficiently. Multi-objective Quality of Service (QoS) metrics like reduced SLA violations, makespan, high throughput, and low energy consumption are crucial. Cloud applications, being computation-intensive, demand effective load balancing to prevent poor solutions due to exponential memory growth.To enhance load balancing in cloud computing, a new hybrid model is proposed, performing file classification using Filetype formatting. Three algorithms¿Ant Colony Optimization using Filetype Formatting (ACOFTF), Data Format Classification using Support Vector Machine (DFC-SVM), and Datatype Formatting DFTF/DTF¿are developed.Overall, the proposed hybrid metaheuristic approaches offer promising solutions for enhancing load balancing in cloud computing environments.Books on Demand GmbH, Überseering 33, 22297 Hamburg 356 pp. Englisch. Codice articolo 9786207487295
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Maintaining accuracy in load balancing using metaheuristics poses challenges despite recent hybrid approaches. Optimized metaheuristic methods are employed to balance loads in the cloud efficiently. Multi-objective Quality of Service (QoS) metrics like reduced SLA violations, makespan, high throughput, and low energy consumption are crucial. Cloud applications, being computation-intensive, demand effective load balancing to prevent poor solutions due to exponential memory growth.To enhance load balancing in cloud computing, a new hybrid model is proposed, performing file classification using Filetype formatting. Three algorithms-Ant Colony Optimization using Filetype Formatting (ACOFTF), Data Format Classification using Support Vector Machine (DFC-SVM), and Datatype Formatting DFTF/DTF-are developed.Overall, the proposed hybrid metaheuristic approaches offer promising solutions for enhancing load balancing in cloud computing environments. Codice articolo 9786207487295
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26400835710
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 395574177
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18400835700
Quantità: 4 disponibili