In this study, we explored the optical and electronic properties of cylindrical quantum dots (CQDs) and multilayer CQDs based on III-V materials, both with and without a single dopant, under the influence of hydrostatic pressure (P), electric field (EF), laser field (LF), and magnetic field (MF). We used the variational method and the finite element method (FEM) to solve the Schrödinger equation and calculate the properties of the system. Initially, we examined the absorption coefficient and refractive index of a CQD under the influence of EF and LF as a function of potential confinement parameters and QD size. Our results indicate that the application of an MF and external P increased the binding energy. Additionally, the effect of strain due to lattice mismatch on the binding energy was significant for low P at the center of the dots. In the case of multilayer CQDs, we demonstrated that the photoionization cross section red-shifts as the radius or temperature increases and blue-shifts due to the additional confinement induced by P. For InAs/GaAs pyramid QD intermediate band solar cells (IBSCs), we found that the presence of QDs significantly impacts the performance of the IBSCs.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 1,91 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9786207805600
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9786207805600_new
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9786207805600
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 172 pp. Englisch. Codice articolo 9786207805600
Quantità: 2 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9786207805600
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In this study, we explored the optical and electronic properties of cylindrical quantum dots (CQDs) and multilayer CQDs based on III-V materials, both with and without a single dopant, under the influence of hydrostatic pressure (P), electric field (EF), laser field (LF), and magnetic field (MF). We used the variational method and the finite element method (FEM) to solve the Schrödinger equation and calculate the properties of the system. Initially, we examined the absorption coefficient and refractive index of a CQD under the influence of EF and LF as a function of potential confinement parameters and QD size. Our results indicate that the application of an MF and external P increased the binding energy. Additionally, the effect of strain due to lattice mismatch on the binding energy was significant for low P at the center of the dots. In the case of multilayer CQDs, we demonstrated that the photoionization cross section red-shifts as the radius or temperature increases and blue-shifts due to the additional confinement induced by P. For InAs/GaAs pyramid QD intermediate band solar cells (IBSCs), we found that the presence of QDs significantly impacts the performance of the IBSCs.Books on Demand GmbH, Überseering 33, 22297 Hamburg 172 pp. Englisch. Codice articolo 9786207805600
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In this study, we explored the optical and electronic properties of cylindrical quantum dots (CQDs) and multilayer CQDs based on III-V materials, both with and without a single dopant, under the influence of hydrostatic pressure (P), electric field (EF), laser field (LF), and magnetic field (MF). We used the variational method and the finite element method (FEM) to solve the Schrödinger equation and calculate the properties of the system. Initially, we examined the absorption coefficient and refractive index of a CQD under the influence of EF and LF as a function of potential confinement parameters and QD size. Our results indicate that the application of an MF and external P increased the binding energy. Additionally, the effect of strain due to lattice mismatch on the binding energy was significant for low P at the center of the dots. In the case of multilayer CQDs, we demonstrated that the photoionization cross section red-shifts as the radius or temperature increases and blue-shifts due to the additional confinement induced by P. For InAs/GaAs pyramid QD intermediate band solar cells (IBSCs), we found that the presence of QDs significantly impacts the performance of the IBSCs. Codice articolo 9786207805600
Quantità: 1 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9786207805600
Quantità: Più di 20 disponibili
Da: CitiRetail, Stevenage, Regno Unito
Paperback. Condizione: new. Paperback. In this study, we explored the optical and electronic properties of cylindrical quantum dots (CQDs) and multilayer CQDs based on III-V materials, both with and without a single dopant, under the influence of hydrostatic pressure (P), electric field (EF), laser field (LF), and magnetic field (MF). We used the variational method and the finite element method (FEM) to solve the Schroedinger equation and calculate the properties of the system. Initially, we examined the absorption coefficient and refractive index of a CQD under the influence of EF and LF as a function of potential confinement parameters and QD size. Our results indicate that the application of an MF and external P increased the binding energy. Additionally, the effect of strain due to lattice mismatch on the binding energy was significant for low P at the center of the dots. In the case of multilayer CQDs, we demonstrated that the photoionization cross section red-shifts as the radius or temperature increases and blue-shifts due to the additional confinement induced by P. For InAs/GaAs pyramid QD intermediate band solar cells (IBSCs), we found that the presence of QDs significantly impacts the performance of the IBSCs. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9786207805600
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26402479860
Quantità: 4 disponibili