"Unveiling the Black Box: Practical Deep Learning and Explainable AI" offre una panoramica completa delle tecniche di Explainable AI (XAI) e della loro importanza nel garantire trasparenza e fiducia nei modelli di AI complessi. Con applicazioni di AI che spaziano dall'assistenza sanitaria alla finanza e ai sistemi autonomi, l'opacità dei modelli di deep learning solleva spesso preoccupazioni etiche, legali e di affidabilità. Questa guida esplora le strutture fondamentali del modello di AI, come Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN) e Recurrent Neural Networks (RNN), evidenziandone l'architettura, la funzionalità e le applicazioni nel mondo reale. Per migliorare l'interpretabilità, il testo introduce i principali metodi XAI come Local Interpretable Model-Agnostic Explanations (LIME) e SHAPley Additive Explanations (SHAP), che consentono agli utenti di comprendere le previsioni del modello. Vengono discusse tecniche avanzate, tra cui Transfer Learning e Attention Mechanisms, per illustrare il loro impatto sull'adattabilità e le prestazioni della rete neurale. Vengono inoltre affrontate le sfide del raggiungimento di un'AI interpretabile, come la gestione del bias, il bilanciamento dell'accuratezza e la garanzia della privacy.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 10,37 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9786208170950_new
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9786208170950
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 144 pp. Italienisch. Codice articolo 9786208170950
Quantità: 2 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9786208170950
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -'Unveiling the Black Box: Practical Deep Learning and Explainable AI' offre una panoramica completa delle tecniche di Explainable AI (XAI) e della loro importanza nel garantire trasparenza e fiducia nei modelli di AI complessi. Con applicazioni di AI che spaziano dall'assistenza sanitaria alla finanza e ai sistemi autonomi, l'opacità dei modelli di deep learning solleva spesso preoccupazioni etiche, legali e di affidabilità. Questa guida esplora le strutture fondamentali del modello di AI, come Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN) e Recurrent Neural Networks (RNN), evidenziandone l'architettura, la funzionalità e le applicazioni nel mondo reale. Per migliorare l'interpretabilità, il testo introduce i principali metodi XAI come Local Interpretable Model-Agnostic Explanations (LIME) e SHAPley Additive Explanations (SHAP), che consentono agli utenti di comprendere le previsioni del modello. Vengono discusse tecniche avanzate, tra cui Transfer Learning e Attention Mechanisms, per illustrare il loro impatto sull'adattabilità e le prestazioni della rete neurale. Vengono inoltre affrontate le sfide del raggiungimento di un'AI interpretabile, come la gestione del bias, il bilanciamento dell'accuratezza e la garanzia della privacy.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 144 pp. Italienisch. Codice articolo 9786208170950
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering. Codice articolo 9786208170950
Quantità: 1 disponibili
Da: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condizione: new. Paperback. "Unveiling the Black Box: Practical Deep Learning and Explainable AI" offre una panoramica completa delle tecniche di Explainable AI (XAI) e della loro importanza nel garantire trasparenza e fiducia nei modelli di AI complessi. Con applicazioni di AI che spaziano dall'assistenza sanitaria alla finanza e ai sistemi autonomi, l'opacita dei modelli di deep learning solleva spesso preoccupazioni etiche, legali e di affidabilita. Questa guida esplora le strutture fondamentali del modello di AI, come Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN) e Recurrent Neural Networks (RNN), evidenziandone l'architettura, la funzionalita e le applicazioni nel mondo reale. Per migliorare l'interpretabilita, il testo introduce i principali metodi XAI come Local Interpretable Model-Agnostic Explanations (LIME) e SHAPley Additive Explanations (SHAP), che consentono agli utenti di comprendere le previsioni del modello. Vengono discusse tecniche avanzate, tra cui Transfer Learning e Attention Mechanisms, per illustrare il loro impatto sull'adattabilita e le prestazioni della rete neurale. Vengono inoltre affrontate le sfide del raggiungimento di un'AI interpretabile, come la gestione del bias, il bilanciamento dell'accuratezza e la garanzia della privacy. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Codice articolo 9786208170950
Quantità: 1 disponibili
Da: CitiRetail, Stevenage, Regno Unito
Paperback. Condizione: new. Paperback. "Unveiling the Black Box: Practical Deep Learning and Explainable AI" offre una panoramica completa delle tecniche di Explainable AI (XAI) e della loro importanza nel garantire trasparenza e fiducia nei modelli di AI complessi. Con applicazioni di AI che spaziano dall'assistenza sanitaria alla finanza e ai sistemi autonomi, l'opacita dei modelli di deep learning solleva spesso preoccupazioni etiche, legali e di affidabilita. Questa guida esplora le strutture fondamentali del modello di AI, come Feedforward Neural Networks (FNN), Convolutional Neural Networks (CNN) e Recurrent Neural Networks (RNN), evidenziandone l'architettura, la funzionalita e le applicazioni nel mondo reale. Per migliorare l'interpretabilita, il testo introduce i principali metodi XAI come Local Interpretable Model-Agnostic Explanations (LIME) e SHAPley Additive Explanations (SHAP), che consentono agli utenti di comprendere le previsioni del modello. Vengono discusse tecniche avanzate, tra cui Transfer Learning e Attention Mechanisms, per illustrare il loro impatto sull'adattabilita e le prestazioni della rete neurale. Vengono inoltre affrontate le sfide del raggiungimento di un'AI interpretabile, come la gestione del bias, il bilanciamento dell'accuratezza e la garanzia della privacy. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9786208170950
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26404305652
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 409897259
Quantità: 4 disponibili