In dieser Studie wird ein hybrides Modell vorgestellt, das die Stärken von K-means Clustering und Support Vector Machines (SVM) zur Klassifizierung von Online-Produktbewertungen nutzt. K-means wird verwendet, um Bewertungen in Clustern zu gruppieren, wodurch die Datenkomplexität reduziert und die Merkmalsextraktion verbessert wird. Anschließend wird SVM eingesetzt, um die geclusterten Daten in positive, negative oder neutrale Bewertungen zu klassifizieren. Der kombinierte Ansatz verbessert die Klassifizierungsgenauigkeit, reduziert die Rechenkosten und bewältigt effektiv große Datensätze. Die experimentellen Ergebnisse zeigen, dass das vorgeschlagene Modell herkömmliche eigenständige Klassifizierungsverfahren in Bezug auf Präzision, Wiedererkennung und Gesamtgenauigkeit übertrifft.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiDa: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9786208796723
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9786208796723
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 208 pp. Deutsch. Codice articolo 9786208796723
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -In dieser Studie wird ein hybrides Modell vorgestellt, das die Stärken von K-means Clustering und Support Vector Machines (SVM) zur Klassifizierung von Online-Produktbewertungen nutzt. K-means wird verwendet, um Bewertungen in Clustern zu gruppieren, wodurch die Datenkomplexität reduziert und die Merkmalsextraktion verbessert wird. Anschließend wird SVM eingesetzt, um die geclusterten Daten in positive, negative oder neutrale Bewertungen zu klassifizieren. Der kombinierte Ansatz verbessert die Klassifizierungsgenauigkeit, reduziert die Rechenkosten und bewältigt effektiv große Datensätze. Die experimentellen Ergebnisse zeigen, dass das vorgeschlagene Modell herkömmliche eigenständige Klassifizierungsverfahren in Bezug auf Präzision, Wiedererkennung und Gesamtgenauigkeit übertrifft.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 208 pp. Deutsch. Codice articolo 9786208796723
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering. Codice articolo 9786208796723
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26404914195
Quantità: 4 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Angewandtes maschinelles Lernen | Ein effizientes Clustering-basiertes Klassifizierungsmodell für Online-Produktbewertungen unter Verwendung von Support-Vektor-Maschinen und K-means A | Vijayaragavan P | Taschenbuch | 208 S. | Deutsch | 2025 | Verlag Unser Wissen | EAN 9786208796723 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Codice articolo 131888570
Quantità: 5 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 408240076
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18404914201
Quantità: 4 disponibili