1 Fundamentals of Functional Analysis.- 1 Convexity in topological linear spaces.- 1.1 Classes of topological linear spaces.- 1.2 Convex sets.- 1.3 Separation of convex sets.- 2 Duality in linear normed spaces.- 2.1 Dual systems of the linear spaces.- 2.2 Weak topologies on linear normed spaces.- 2.3 Reflexive Banach spaces.- 2.4 Duality mapping.- 3 Vector-valued functions and distributions.- 3.1 The Bochner integral.- 3.2 Bounded variation vector functions.- 3.3 Vector distributions on the real axis.- 3.4 Vector distributions and Wk, P spaces.- 3.5 Sobolev spaces.- 4 Maximal monotone operators.- 4.1 Definitions and fundamental results.- 4.2 Evolution equations in Hilbert spaces.- 2 Convex Functions.- 1 General properties of convex functions.- 1.1 Definitions and basic properties.- 1.2 Lower-semicontinuous functions.- 1.3 Lower-semicontinuous convex functions.- 1.4 Conjugate functions.- 2 The subdifferential of a convex function.- 2.1 Definition and fundamental results.- 2.2 Further properties of subdifferential mappings.- 2.3 Regularization of the convex function.- 2.4 Perturbations of cyclically monotone operators.- 2.5 Variational inequalities.- 3 Concave-convex functions.- 3.1 Saddle points and minimax equality.- 3.2 Saddle functions.- 3.3 Minimax theorems.- Bibliographical notes.- 3 Convex Programming.- 1 Optimality conditions.- 1.1 The case of a finite number of constraints.- 1.2 Operatorial convex constraints.- 1.3 Non-linear programming in the case of Fréchet-differentiability.- 1.4 Examples.- 2 Duality in convex programming.- 2.1 Dual problems.- 2.2 Fenchel duality theorem.- 2.3 Examples.- 3 Applications of the duality theory.- 3.1 Linear programming.- 3.2 The best approximation problem.- Bibliographical notes.- 4 Convex Control Problems in Hilbert Spaces.- 1 Necessary and sufficient conditions for optimality.- 1.1 Basic assumptions.- 1.2 Optimality theorem.- 1.3 Proof of Theorem 1.1.- 1.4 Proof of Theorem 1.2.- 1.5 Further remarks on optimality theorems.- 2 The dual optimal control problem.- 2.1 Formulation of the dual problem.- 2.2 The duality theorem.- 2.3 Some examples.- 3 Convex control problems associated with linear evolutionary processes in Hilbert space.- 3.1 Statement of the problem.- 3.2 The optimality theorem.- 3.3 Optimal control of linear hereditary systems.- 4 Synthesis of optimal control.- 4.1 Optimal synthesis function.- 4.2 Hamilton-Jacobi equations.- Bibliographical notes.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 20,66 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Zubal-Books, Since 1961, Cleveland, OH, U.S.A.
Condizione: Very Good. PAPERBACK (same isbn) 316 pp., wear to spine and covers else text clean & binding tight. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Codice articolo ZB1271385
Quantità: 1 disponibili
Da: Antiquariat Haufe & Lutz, Karlsruhe, BW, Germania
8°. XI, 316 S. OKart. English edition. - Good copy. Codice articolo 83513CB
Quantità: 1 disponibili