This is a new book in biomathematics, which includes new models of stochastic non-linear biological systems and new results for these systems. These results are based on the new results for non-linear difference and differential equations in random media. This book contains: -New stochastic non-linear models of biological systems, such as biological systems in random media: epidemic, genetic selection, demography, branching, logistic growth and predator-prey models; -New results for scalar and vector difference equations in random media with applications to the stochastic biological systems in 1); -New results for stochastic non-linear biological systems, such as averaging, merging, diffusion approximation, normal deviations and stability; -New approach to the study of stochastic biological systems in random media such as random evolution approach.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Preface. List of Notations. 1: Random Media. 1.1. Markov Chains. 1.2. Ergodicity and Reducibility of Markov Chains. 1.3. Markov Renewal Processes. 1.4. Semi-Markov Processes. 1.5. Jump Markov Processes. 1.6. Wiener Processes and Diffusion Processes. 1.7. Martingales. 1.8. Semigroups of Operators and their Generators. 1.9. Martingale Characterization of Markov and Semi-Markov Processes. 1.10. General Representation and Measurability of Biological Systems in Random Media. 2: Limit Theorems for Difference Equations in Random Media. 2.1. Limit Theorems for Random Evolutions. 2.2. Averaging of Difference Equations in Random Media. 2.3. Diffusion Approximation of Difference Equations in Random Media. 2.4. Normal Deviations of Difference Equations in Random Media. 2.5. Merging of Difference Equations in Random Media. 2.6. Stability of Difference Equations in Random Media. 2.7. Limit Theorems for Vector Difference Equations in Random Media. 3: Epidemic Models. 3.1. Deterministic Epidemic Models. 3.2. Stochastic Epidemic Model (Epidemic Model in Random Media). 3.3. Averaging of Epidemic Model in Random Media. 3.4. Merging of Epidemic Models in Random Media. 3.5. Diffusion Approximation of Epidemic Models in Random Media. 3.6. Normal Deviations of Epidemic Model in Random Media. 3.7. Stochastic Stability of Epidemic Model. 4: Genetic Selection Models. 4.1. Deterministic Genetic Selection Models. 4.2. Stochastic Genetic Selection Model (Genetic Selection Model in Random Media). 4.3. Averaging of Slow Genetic Selection Model in Random Media. 4.4. Merging of Slow Genetic Selection Model in Random Media. 4.5. Diffusion Approximation of Slow Genetic Selection Model in Random Media. 4.6. Normal Deviations of Slow Genetic Selection Model in Random Media. 4.7. Stochastic Stability of Slow Genetic Selection Model. 5: Branching Models. 5.1. Branching Models with Deterministic Generating Function. 5.2. Branching Models in Random Media. 5.3. Averaging of Branching Models in Random Media. 5.4. Merging of Branching Model in Random Media. 5.5. Diffusion Approximation of Branching Process in Random Media. 5.6. Normal Deviations of Branching Process in Random Media. 5.7. Stochastic Stability of Branching Model in Averaging and Diffusion Approximation Schemes. 6: Demographic Models. 6.1. Deterministic Demographic Model. 6.2. Stochastic Demographic Models (Demographic Models in Random Media). 6.3. Averaging of Demographic Models in Random Media. 6.4. Merging of Demographic Model. 6.5. Diffusion Approximation of Demographic Model. 6.6. Normal Deviations of Demographic Models in Random Media. 6.7. Stochastic Stability of Demographic Model in Averaging and Diffusion Approximation Schemes. 7: Logistic Growth Models. 7.1. Deterministic Logistic Growth Model. 7.2. Stochastic Logistic Growth Model (Logistic Growth Model in Random Media). 7.3. Averaging of Logistic Growth Model in Random Media. 7.4. Merging of Logistic Growth Model in Random Media. 7.5. Diffusion Approximation of Logistic Growth Model in Random Media. 7.6. Normal De
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,21 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Preface. List of Notations. 1: Random Media. 1.1. Markov Chains. 1.2. Ergodicity and Reducibility of Markov Chains. 1.3. Markov Renewal Processes. 1.4. Semi-Markov Processes. 1.5. Jump Markov Processes. 1.6. Wiener Processes and Diffusion Processes. 1.7. Ma. Codice articolo 5820248
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The book is devoted to the study of limit theorems and stability of evolving biologieal systems of 'particles' in random environment. Here the term 'particle' is used broadly to include moleculas in the infected individuals considered in epidemie models, species in logistie growth models, age classes of population in demographics models, to name a few. The evolution of these biological systems is usually described by difference or differential equations in a given space X of the following type and dxt/dt = g(Xt, y), here, the vector x describes the state of the considered system, 9 specifies how the system's states are evolved in time (discrete or continuous), and the parameter y describes the change ofthe environment. For example, in the discrete-time logistic growth model or the continuous-time logistic growth model dNt/dt = r(y)Nt(l-Nt/K(y)), N or Nt is the population of the species at time n or t, r(y) is the per capita n birth rate, and K(y) is the carrying capacity of the environment, we naturally have X = R, X == Nn(X == Nt), g(x, y) = r(y)x(l-xl K(y)) , xE X. Note that n t for a predator-prey model and for some epidemie models, we will have that X = 2 3 R and X = R , respectively. In th case of logistic growth models, parameters r(y) and K(y) normaIly depend on some random variable y.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 240 pp. Englisch. Codice articolo 9789048163984
Quantità: 1 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Evolution of Biological Systems in Random Media: Limit Theorems and Stability 0.75. Book. Codice articolo BBS-9789048163984
Quantità: 5 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 11877035-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9789048163984_new
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9789048163984
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The book is devoted to the study of limit theorems and stability of evolving biologieal systems of 'particles' in random environment. Here the term 'particle' is used broadly to include moleculas in the infected individuals considered in epidemie models, species in logistie growth models, age classes of population in demographics models, to name a few. The evolution of these biological systems is usually described by difference or differential equations in a given space X of the following type and dxt/dt = g(Xt, y), here, the vector x describes the state of the considered system, 9 specifies how the system's states are evolved in time (discrete or continuous), and the parameter y describes the change ofthe environment. For example, in the discrete-time logistic growth model or the continuous-time logistic growth model dNt/dt = r(y)Nt(l-Nt/K(y)), N or Nt is the population of the species at time n or t, r(y) is the per capita n birth rate, and K(y) is the carrying capacity of the environment, we naturally have X = R, X == Nn(X == Nt), g(x, y) = r(y)x(l-xl K(y)) , xE X. Note that n t for a predator-prey model and for some epidemie models, we will have that X = 2 3 R and X = R , respectively. In th case of logistic growth models, parameters r(y) and K(y) normaIly depend on some random variable y. Codice articolo 9789048163984
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 11877035-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 11877035
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 240. Codice articolo 262568418
Quantità: 4 disponibili