In this book we are attempting to o?er a modi?cation of Dirac’s theory of the electron we believe to be free of the usual paradoxa, so as perhaps to be acceptable as a clean quantum-mechanical treatment. While it seems to be a fact that the classical mechanics, from Newton to E- stein’s theory of gravitation, o?ers a very rigorous concept, free of contradictions and able to accurately predict motion of a mass point, quantum mechanics, even in its simplest cases, does not seem to have this kind of clarity. Almost it seems that everyone of its fathers had his own wave equation. For the quantum mechanical 1-body problem (with vanishing potentials) let 1 us focus on 3 di?erent wave equations : (I) The Klein-Gordon equation 3 2 2 2 2 (1) ? ?/?t +(1??)? =0 , ? = Laplacian = ? /?x . j 1 This equation may be written as ? ? (2) (?/?t?i 1??)(?/?t +i 1??)? =0 . Hereitmaybenotedthattheoperator1??hasawellde?nedpositive square root as unbounded self-adjoint positive operator of the Hilbert 2 3 spaceH = L (R ).
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
This work presents a "Clean Quantum Theory of the Electron", based on Dirac s equation. "Clean" in the sense of a complete mathematical explanation of the well known paradoxes of Dirac s theory, and a connection to classical theory, including the motion of a magnetic moment (spin) in the given field, all for a charged particle (of spin ½) moving in a given electromagnetic field.
This theory is relativistically covariant, and it may be regarded as a mathematically consistent quantum-mechanical generalization of the classical motion of such a particle, à la Newton and Einstein. Normally, our fields are time-independent, but also discussed is the time-dependent case, where slightly different features prevail. A "Schroedinger particle", such as a light quantum, experiences a very different (time-dependent) "Precise Predictablity of Observables". An attempt is made to compare both cases. There is not the Heisenberg uncertainty of location and momentum; rather, location alone possesses a built-in uncertainty of measurement.
Mathematically, our tools consist of the study of a pseudo-differential operator (i.e. an "observable") under conjugation with the Dirac propagator: such an operator has a "symbol" approximately propagating along classical orbits, while taking its "spin" along. This is correct only if the operator is "precisely predictable", that is, it must approximately commute with the Dirac Hamiltonian, and, in a sense, will preserve the subspaces of electronic and positronic states of the underlying Hilbert space.
Audience:
Theoretical Physicists, specifically in Quantum Mechanics.
Mathematicians, in the fields of Analysis, Spectral Theory of Self-adjoint differential operators, and Elementary Theory of Pseudo-Differential Operators
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,92 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Codice articolo 5821143
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This work presents a Clean Quantum Theory of the Electron, based on Dirac's equation. 'Clean' in the sense of a complete mathematical explanation of the well known paradoxes of Dirac's theory and a connection to classical theory. It discusses the existence of an accurate split between physical states belonging to the electron and to the positron as well as the fact that precisely predictable observables must preserve this split. 296 pp. Englisch. Codice articolo 9789048172993
Quantità: 2 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9789048172993
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In this book we are attempting to o er a modi cation of Dirac¿s theory of the electron we believe to be free of the usual paradoxa, so as perhaps to be acceptable as a clean quantum-mechanical treatment. While it seems to be a fact that the classical mechanics, from Newton to E- stein¿s theory of gravitation, o ers a very rigorous concept, free of contradictions and able to accurately predict motion of a mass point, quantum mechanics, even in its simplest cases, does not seem to have this kind of clarity. Almost it seems that everyone of its fathers had his own wave equation. For the quantum mechanical 1-body problem (with vanishing potentials) let 1 us focus on 3 di erent wave equations : (I) The Klein-Gordon equation 3 2 2 2 2 (1) / t +(1 ) =0 , = Laplacian = / x . j 1 This equation may be written as (2) ( / t i 1 )( / t +i 1 ) =0 . Hereitmaybenotedthattheoperator1 hasawellde nedpositive square root as unbounded self-adjoint positive operator of the Hilbert 2 3 spaceH = L (R ).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 296 pp. Englisch. Codice articolo 9789048172993
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this book we are attempting to o er a modi cation of Dirac's theory of the electron we believe to be free of the usual paradoxa, so as perhaps to be acceptable as a clean quantum-mechanical treatment. While it seems to be a fact that the classical mechanics, from Newton to E- stein's theory of gravitation, o ers a very rigorous concept, free of contradictions and able to accurately predict motion of a mass point, quantum mechanics, even in its simplest cases, does not seem to have this kind of clarity. Almost it seems that everyone of its fathers had his own wave equation. For the quantum mechanical 1-body problem (with vanishing potentials) let 1 us focus on 3 di erent wave equations : (I) The Klein-Gordon equation 3 2 2 2 2 (1) / t +(1 ) =0 , = Laplacian = / x . j 1 This equation may be written as (2) ( / t i 1 )( / t +i 1 ) =0 . Hereitmaybenotedthattheoperator1 hasawellde nedpositive square root as unbounded self-adjoint positive operator of the Hilbert 2 3 spaceH = L (R ). Codice articolo 9789048172993
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 288 pages. 9.45x6.30x0.67 inches. In Stock. Codice articolo x-9048172993
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9789048172993_new
Quantità: Più di 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Apr0316110338487
Quantità: Più di 20 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA79090481729936
Quantità: 1 disponibili