Articoli correlati a BLUEPRINTS FOR TEXT ANALYTICS USING PYTHON MACHINE...

BLUEPRINTS FOR TEXT ANALYTICS USING PYTHON MACHINE LEARNING BASED SOLUTIONS FOR COMMON REAL WORLD (NLP) APPLICATIONS

 
9789385889738: BLUEPRINTS FOR TEXT ANALYTICS USING PYTHON MACHINE LEARNING BASED SOLUTIONS FOR COMMON REAL WORLD (NLP) APPLICATIONS

Al momento non sono disponibili copie per questo codice ISBN.

Sinossi

Turning text into valuable information is essential for businesses looking to gain a competitive advantage. With recent improvements in natural language processing (NLP), users now have many options for solving complex challenges. But it's not always clear which NLP tools or libraries would work for a business's needs, or which techniques you should use and in what order.This practical book provides data scientists and developers with blueprints for best practice solutions to common tasks in text analytics and natural language processing. Authors Jens Albrecht, Sidharth Ramachandran, and Christian Winkler provide real-world case studies and detailed code examples in Python to help you get started quickly.Extract data from APIs and web pagesPrepare textual data for statistical analysis and machine learningUse machine learning for classification, topic modeling, and summarizationExplain AI models and classification resultsExplore and visualize semantic similarities with word embeddingsIdentify customer sentiment in product reviewsCreate a knowledge graph based on named entities and their relations

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

(nessuna copia disponibile)

Cerca:



Inserisci un desiderata

Non riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!

Inserisci un desiderata

Altre edizioni note dello stesso titolo

9781492074083: Blueprints for Text Analytics using Python: Machine Learning Based Solutions for Common Real World (NLP) Applications

Edizione in evidenza

ISBN 10:  149207408X ISBN 13:  9781492074083
Casa editrice: O'Reilly Media, 2020
Brossura