1. General overview and context
2. Global state-of-the-art overview
3. Energy consumption breakdown for embedded platform targets
4. High level embedded arch and compiler requirements
5. Overall architecture exploration framework
6. Clustered loop buffer and data cluster organisation
7. Multi-threading in uni-threaded processors
8. Indirectly addressed arrays and dynamic data structure handling on scratchpad memories
9. Asymmetric foreground memory organisation
10. Exploiting word-width information in the processor datapath
11. Advanced strength reduction in shift-add based operations
12. Bioimaging application demonstrator
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Modern consumers carry many electronic devices, like a mobile phone, digital camera, GPS, PDA and an MP3 player. The functionality of each of these devices has gone through an important evolution over recent years, with a steep increase in both the number of features as in the quality of the services that they provide. However, providing the required compute power to support (an uncompromised combination of) all this functionality is highly non-trivial. Designing processors that meet the demanding requirements of future mobile devices requires the optimization of the embedded system in general and of the embedded processors in particular, as they should strike the correct balance between flexibility, energy efficiency and performance. In general, a designer will try to minimize the energy consumption (as far as needed) for a given performance, with a sufficient flexibility. However, achieving this goal is already complex when looking at the processor in isolation, but, in reality, the processor is a single component in a more complex system. In order to design such complex system successfully, critical decisions during the design of each individual component should take into account effect on the other parts, with a clear goal to move to a global Pareto optimum in the complete multi-dimensional exploration space.
In the complex, global design of battery-operated embedded systems, the focus of Ultra-Low Energy Domain-Specific Instruction-Set Processors is on the energy-aware architecture exploration of domain-specific instruction-set processors and the co-optimization of the datapath architecture, foreground memory, and instruction memory organisation with a link to the required mapping techniques or compiler steps at the early stages of the design. By performing an extensive energy breakdown experiment for a complete embedded platform, both energy and performance bottlenecks have been identified, together with the important relations between the different components. Based on this knowledge, architecture extensions are proposed for all the bottlenecks.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 12,26 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiEUR 6,81 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Phatpocket Limited, Waltham Abbey, HERTS, Regno Unito
Condizione: Like New. Used - Like New. Book is new and unread but may have minor shelf wear. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Codice articolo Z1-F-062-00536
Quantità: 1 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9789400733060
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Apr0412070050149
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9789400733060_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Modern consumers carry many electronic devices, like a mobile phone, digital camera, GPS, PDA and an MP3 player. The functionality of each of these devices has gone through an important evolution over recent years, with a steep increase in both the number of features as in the quality of the services that they provide. However, providing the required compute power to support (an uncompromised combination of) all this functionality is highly non-trivial. Designing processors that meet the demanding requirements of future mobile devices requires the optimization of the embedded system in general and of the embedded processors in particular, as they should strike the correct balance between flexibility, energy efficiency and performance. In general, a designer will try to minimize the energy consumption (as far as needed) for a given performance, with a sufficient flexibility. However, achieving this goal is already complex when looking at the processor in isolation, but, in reality, the processor is a single component in a more complex system. In order to design such complex system successfully, critical decisions during the design of each individual component should take into account effect on the other parts, with a clear goal to move to a global Pareto optimum in the complete multi-dimensional exploration space.In the complex, global design of battery-operated embedded systems, the focus of Ultra-Low Energy Domain-Specific Instruction-Set Processors is on the energy-aware architecture exploration of domain-specific instruction-set processors and the co-optimization of the datapath architecture, foreground memory, and instruction memory organisation with a link to the required mapping techniques or compiler steps at the early stages of the design. By performing an extensive energy breakdown experiment for a complete embedded platform, both energy and performance bottlenecks have been identified, together with the important relations between the different components. Based on this knowledge, architecture extensions are proposed for all the bottlenecks. 428 pp. Englisch. Codice articolo 9789400733060
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A systematic methodology for exploiting word-width information in embedded compilersSoftware method to enable heterogeneous data parallelism (SIMD)Technique for a context-driven strength reduction for constant multiplications, including a trade-off with app. Codice articolo 5826354
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 428. Codice articolo 2614919866
Quantità: 4 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Modern consumers carry many electronic devices, like a mobile phone, digital camera, GPS, PDA and an MP3 player. The functionality of each of these devices has gone through an important evolution over recent years, with a steep increase in both the number of features as in the quality of the services that they provide. However, providing the required compute power to support (an uncompromised combination of) all this functionality is highly non-trivial. Designing processors that meet the demanding requirements of future mobile devices requires the optimization of the embedded system in general and of the embedded processors in particular, as they should strike the correct balance between flexibility, energy efficiency and performance. In general, a designer will try to minimize the energy consumption (as far as needed) for a given performance, with a sufficient flexibility. However, achieving this goal is already complex when looking at the processor in isolation, but, in reality, the processor is a single component in a more complex system. In order to design such complex system successfully, critical decisions during the design of each individual component should take into account effect on the other parts, with a clear goal to move to a global Pareto optimum in the complete multi-dimensional exploration space.In the complex, global design of battery-operated embedded systems, the focus of Ultra-Low Energy Domain-Specific Instruction-Set Processors is on the energy-aware architecture exploration of domain-specific instruction-set processors and the co-optimization of the datapath architecture, foreground memory, and instruction memory organisation with a link to the required mapping techniques or compiler steps at the early stages of the design. By performing an extensive energy breakdown experiment for a complete embedded platform, both energy and performance bottlenecks have been identified, together with the important relations between thedifferent components. Based on this knowledge, architecture extensions are proposed for all the bottlenecks.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 428 pp. Englisch. Codice articolo 9789400733060
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Modern consumers carry many electronic devices, like a mobile phone, digital camera, GPS, PDA and an MP3 player. The functionality of each of these devices has gone through an important evolution over recent years, with a steep increase in both the number of features as in the quality of the services that they provide. However, providing the required compute power to support (an uncompromised combination of) all this functionality is highly non-trivial. Designing processors that meet the demanding requirements of future mobile devices requires the optimization of the embedded system in general and of the embedded processors in particular, as they should strike the correct balance between flexibility, energy efficiency and performance. In general, a designer will try to minimize the energy consumption (as far as needed) for a given performance, with a sufficient flexibility. However, achieving this goal is already complex when looking at the processor in isolation, but, in reality, the processor is a single component in a more complex system. In order to design such complex system successfully, critical decisions during the design of each individual component should take into account effect on the other parts, with a clear goal to move to a global Pareto optimum in the complete multi-dimensional exploration space.In the complex, global design of battery-operated embedded systems, the focus of Ultra-Low Energy Domain-Specific Instruction-Set Processors is on the energy-aware architecture exploration of domain-specific instruction-set processors and the co-optimization of the datapath architecture, foreground memory, and instruction memory organisation with a link to the required mapping techniques or compiler steps at the early stages of the design. By performing an extensive energy breakdown experiment for a complete embedded platform, both energy and performance bottlenecks have been identified, together with the important relations between thedifferent components. Based on this knowledge, architecture extensions are proposed for all the bottlenecks. Codice articolo 9789400733060
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 428 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 9705317
Quantità: 4 disponibili