Machine learning is concerned with the analysis of large data and multiple variables. It is also often more sensitive than traditional statistical methods to analyze small data. The first and second volumes reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, fuzzy modeling, various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, association rule learning, anomaly detection, and correspondence analysis. This third volume addresses more advanced methods and includes subjects like evolutionary programming, stochastic methods, complex sampling, optional binning, Newton's methods, decision trees, and other subjects. Both the theoretical bases and the step by step analyses are described for the benefit of non-mathematical readers. Each chapter can be studied without the need to consult other chapters. Traditional statistical tests are, sometimes, priors to machine learning methods, and they are also, sometimes, used as contrast tests. To those wishing to obtain more knowledge of them, we recommend to additionally study (1) Statistics Applied to Clinical Studies 5th Edition 2012, (2) SPSS for Starters Part One and Two 2012, and (3) Statistical Analysis of Clinical Data on a Pocket Calculator Part One and Two 2012, written by the same authors, and edited by Springer, New York.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Machine learning is concerned with the analysis of large data and multiple variables. It is also often more sensitive than traditional statistical methods to analyze small data. The first and second volumes reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, fuzzy modeling, various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, association rule learning, anomaly detection, and correspondence analysis. This third volume addresses more advanced methods and includes subjects like evolutionary programming, stochastic methods, complex sampling, optional binning, Newton's methods, decision trees, and other subjects. Both the theoretical bases and the step by step analyses are described for the benefit of non-mathematical readers. Each chapter can be studied without the need to consult other chapters. Traditional statistical tests are, sometimes, priors to machine learning methods, and they are also, sometimes, used as contrast tests. To those wishing to obtain more knowledge of them, we recommend to additionally study (1) Statistics Applied to Clinical Studies 5th Edition 2012, (2) SPSS for Starters Part One and Two 2012, and (3) Statistical Analysis of Clinical Data on a Pocket Calculator Part One and Two 2012, written by the same authors, and edited by Springer, New York.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 30,00 per la spedizione da Germania a U.S.A.
Destinazione, tempi e costiEUR 3,42 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germania
XIX, 224 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Codice articolo 657KB
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Apr0412070051550
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 20391055-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9789400778689_new
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Mason, OH, U.S.A.
Hardcover. Condizione: new. Hardcover. Machine learning is concerned with the analysis of large data and multiple variables. It is also often more sensitive than traditional statistical methods to analyze small data. The first and second volumes reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, fuzzy modeling, various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, association rule learning, anomaly detection, and correspondence analysis. This third volume addresses more advanced methods and includes subjects like evolutionary programming, stochastic methods, complex sampling, optional binning, Newton's methods, decision trees, and other subjects. Both the theoretical bases and the step by step analyses are described for the benefit of non-mathematical readers. Each chapter can be studied without the need to consult other chapters. Traditional statistical tests are, sometimes, priors to machine learning methods, and they are also, sometimes, used as contrast tests. To those wishing to obtain more knowledge of them, we recommend to additionally study (1) Statistics Applied to Clinical Studies 5th Edition 2012, (2) SPSS for Starters Part One and Two 2012, and (3) Statistical Analysis of Clinical Data on a Pocket Calculator Part One and Two 2012, written by the same authors, and edited by Springer, New York. Machine Learning in Medicine Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9789400778689
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 246 Index. Codice articolo 26142314102
Quantità: 4 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 20391055-n
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Machine learning is concerned with the analysis of large data and multiple variables. It is also often more sensitive than traditional statistical methods to analyze small data. The first and second volumes reviewed subjects like optimal scaling, neural networks, factor analysis, partial least squares, discriminant analysis, canonical analysis, fuzzy modeling, various clustering models, support vector machines, Bayesian networks, discrete wavelet analysis, association rule learning, anomaly detection, and correspondence analysis. This third volume addresses more advanced methods and includes subjects like evolutionary programming, stochastic methods, complex sampling, optional binning, Newton's methods, decision trees, and other subjects. Both the theoretical bases and the step by step analyses are described for the benefit of non-mathematical readers. Each chapter can be studied without the need to consult other chapters. Traditional statistical tests are, sometimes, priors to machine learning methods, and they are also, sometimes, used as contrast tests. To those wishing to obtain more knowledge of them, we recommend to additionally study (1) Statistics Applied to Clinical Studies 5th Edition 2012, (2) SPSS for Starters Part One and Two 2012, and (3) Statistical Analysis of Clinical Data on a Pocket Calculator Part One and Two 2012, written by the same authors, and edited by Springer, New York. 244 pp. Englisch. Codice articolo 9789400778689
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 246 41 Illus. Codice articolo 135017897
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 246. Codice articolo 18142314108
Quantità: 4 disponibili