In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume.
Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail.
Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Preface; M.I. Jordan. Part I: Inference. Introduction to Inference for Bayesian Networks; R. Cowell. Advanced Inference in Bayesian Networks; R. Cowell. Inference in Bayesian Networks Using Nested Junction Trees; U. Kjærulff. Bucket Elimination: A Unifying Framework for Probabilistic Inference; R. Dechter. An Introduction to Variational Methods for Graphical Models; M.I. Jordan, et al. Improving the Mean Field Approximation via the Use of Mixture Distributions; T.S. Jaakkola, M.I. Jordan. Introduction to Monte Carlo Methods; D.J.C. MacKay. Suppressing Random Walks in Markov Chain Monte Carlo Using Ordered Overrelaxation; R.M. Neal. Part II: Independence. Chain Graphs and Symmetric Associations; T.S. Richardson. The Multiinformation Function as a Tool for Measuring Stochastic Dependence; M. Studený, J. Vejnarová. Part III: Foundations for Learning. A Tutorial on Learning with Bayesian Networks; D. Heckerman. A View of the EM Algorithm that Justifies Incremental, Sparse, and Other Variants; R.M. Neal, G.E. Hinton. Part IV: Learning from Data. Latent Variable Models; C.M. Bishop. Stochastic Algorithms for Exploratory Data Analysis: Data Clustering and Data Visualization; J.M. Buhmann. Learning Bayesian Networks with Local Structure; N. Friedman, M. Goldszmidt. Asymptotic Model Selection for Directed Networks with Hidden Variables; D. Geiger, et al. A Hierarchical Community of Experts; G.E. Hinton, et al. An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering; M.J. Kearns, et al. Learning Hybrid Bayesian Networks from Data; S. Monti, G.F. Cooper. A Mean Field Learning Algorithm for UnsupervisedNatural Networks; L. Saul, M.I. Jordan. Edge Exclusion Tests for Graphical Gaussian Models; P.W.F. Smith, J. Whittaker. Hepatitis B: A Case Study in MCMC; D.J. Spiegelhalter, et al. Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond; C.K.I. Williams. Subject Index.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 2,25 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 48,99 per la spedizione da Germania a U.S.A.
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Proceedings of the NATO Advanced Study Institute, Ettore Maiorana Centre, Erice, Italy, September 27-October 7, 1996 In the past decade, a number of different research communities within the computational sciences have studied learning in networks. Codice articolo 5832735
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists. 648 pp. Englisch. Codice articolo 9789401061049
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 20348321-n
Quantità: 15 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9789401061049
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condizione: new. Paperback. In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists. In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9789401061049
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 20348321
Quantità: 15 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume.Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail.Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 648 pp. Englisch. Codice articolo 9789401061049
Quantità: 1 disponibili
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condizione: New. Proceedings of the NATO Advanced Study Institute, Ettore Maiorana Centre, Erice, Italy, September 27-October 7, 1996 Editor(s): Jordan, Michael I. Series: NATO Science Series D:. Num Pages: 641 pages, biography. BIC Classification: PBT; PHS; UYQ. Category: (P) Professional & Vocational. Dimension: 237 x 158 x 40. Weight in Grams: 960. . 2012. Softcover reprint of the original 1st ed. 1998. Paperback. . . . . Codice articolo V9789401061049
Quantità: 15 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists. Codice articolo 9789401061049
Quantità: 1 disponibili
Da: Kennys Bookstore, Olney, MD, U.S.A.
Condizione: New. Proceedings of the NATO Advanced Study Institute, Ettore Maiorana Centre, Erice, Italy, September 27-October 7, 1996 Editor(s): Jordan, Michael I. Series: NATO Science Series D:. Num Pages: 641 pages, biography. BIC Classification: PBT; PHS; UYQ. Category: (P) Professional & Vocational. Dimension: 237 x 158 x 40. Weight in Grams: 960. . 2012. Softcover reprint of the original 1st ed. 1998. Paperback. . . . . Books ship from the US and Ireland. Codice articolo V9789401061049
Quantità: 15 disponibili