Articoli correlati a nD-PointCloud Data Management: Continuous Levels, Adaptive...

nD-PointCloud Data Management: Continuous Levels, Adaptive Histograms, and Diverse Query Geometries - Brossura

 
9789463665728: nD-PointCloud Data Management: Continuous Levels, Adaptive Histograms, and Diverse Query Geometries

Sinossi

In the Geomatics domain, a point cloud refers to a data set that records the coordinates and other attributes of a huge number of points. Conceptually, each of the attributes can be regarded as a dimension to represent a specific type of information, such as time and Level of Importance (LoI). Drastically increasing collection of high dimensional point clouds raises essential demand for smart and highly efficient data management solutions. However, effective tools are missing. File-based solutions require substantial development of data structures and algorithms. Also, with such solutions, enormous effort has to be made to integrate different data types, formats and libraries. By contrast, state-of-the-art DataBase Management Systems (DBMSs) avoid these issues, because they are initially devised for generic use of data. However, DBMSs still present limitations on efficiently indexing non-uniformly distributed points, supporting continuous LoI, and operating high dimensional data. These problems motivate the PhD research which focuses on developing a new DBMS solution. It is aimed at efficiently managing and querying massive nD point clouds to support different types of applications.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Dalla quarta di copertina

In the Geomatics domain, a point cloud refers to a data set that records the coordinates and other attributes of a huge number of points. Conceptually, each of the attributes can be regarded as a dimension to represent a specific type of information, such as time and Level of Importance (LoI). Drastically increasing collection of high dimensional point clouds raises essential demand for smart and highly efficient data management solutions. However, effective tools are missing. File-based solutions require substantial development of data structures and algorithms. Also, with such solutions, enormous effort has to be made to integrate different data types, formats and libraries. By contrast, state-of-the-art DataBase Management Systems (DBMSs) avoid these issues, because they are initially devised for generic use of data. However, DBMSs still present limitations on efficiently indexing non-uniformly distributed points, supporting continuous LoI, and operating high dimensional data. These problems motivate the PhD research which focuses on developing a new DBMS solution. It is aimed at efficiently managing and querying massive nD point clouds to support different types of applications.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreTU Delft
  • Data di pubblicazione2022
  • ISBN 10 9463665722
  • ISBN 13 9789463665728
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero edizione1
  • Numero di pagine204
  • Contatto del produttorenon disponibile

Compra usato

Zustand: Hervorragend | Seiten:...
Visualizza questo articolo

EUR 9,90 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per nD-PointCloud Data Management: Continuous Levels, Adaptive...

Foto dell'editore

Liu, Haicheng
Editore: TU Delft, 2022
ISBN 10: 9463665722 ISBN 13: 9789463665728
Antico o usato Brossura

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Hervorragend. Zustand: Hervorragend | Seiten: 204 | Sprache: Englisch | Produktart: Bücher. Codice articolo 41726535/1

Contatta il venditore

Compra usato

EUR 5,69
Convertire valuta
Spese di spedizione: EUR 9,90
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello