This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R (“frailtyHL”), while the real-world data examples together with an R package, “frailtyHL” in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to researchers in medical and genetics fields, graduate students, and PhD (bio) statisticians.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Il Do Ha is a full professor in the Department of Statistics at Pukyong National University in South Korea. His research interests are multivariate survival analysis using h-likelihood, inferences on random-effect models, clinical trials and financial statistics. Dr. Ha received his Ph.D. degree in statistics from Seoul National University. He has served as an Associate Editor of Computational Statistics until 2008-2012 and has been a fellow of the Royal Statistical Society (RSS) since 2006. Jong-Hyeon Jeong is a full professor in the Department of Biostatistics at University of Pittsburgh in USA. His research interests are in survival analysis, including competing risks, quantile residual life, empirical likelihood, h-likelihood, frailty model and clinical trials. He has published his first book with Springer: Jeong, J.-H. (2014) Statistical Inference on Residual Life, New York: Springer. Dr. Jeong received his Ph.D. degree in statistics from University of Rochester. He has been a fellow of the American Statistical Association (ASA) since 2017 as well as an elected member of the international Statistical Institute (ISI) since 2007. Dr. Jeong is also serving on the editorial board for the journal “Lifetime Data Analysis”. Youngjo Lee is a full professor in the Department of Statistics at Seoul National University in South Korea and also an adjunct professor of Karolinska Institutet in Sweden. His research interests are extension, application, theory and software development for hierarchical GLM (HGLM) and multivariate survival models using h-likelihood. He has published a HGLM book with Chapman and Hall: Lee, Y., Nelder, J. A. and Pawitan, Y. (2017) Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood, 2nd edition, Boca Raton: Chapman and Hall. Dr. Lee received his Ph.D. degree in statistics from Iowa State University. He has been a fellow of the Royal Statistical Society (RSS) since 1996 as well as the American Statistical Association (ASA) since 2013.
This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R (“frailtyHL”), while the real-world data examples together with an R package, “frailtyHL” in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to researchers in medical and genetics fields, graduate students, and PhD (bio) statisticians.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Il Do Ha is a full professor in the Department of Statistics at Pukyong National University in South Korea. His research interests are multivariate survival analysis using h-likelihood, inferences on random-effect models, clinical trials and financial stati. Codice articolo 449937685
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R ('frailtyHL'), while the real-world data examples together with an R package, 'frailtyHL' in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to researchers in medical and genetics fields, graduate students, and PhD (bio) statisticians. 300 pp. Englisch. Codice articolo 9789811349010
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R (¿frailtyHL¿), while the real-world data examples together with an R package, ¿frailtyHL¿ in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to researchers in medical and genetics fields, graduate students, and PhD (bio) statisticians.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 300 pp. Englisch. Codice articolo 9789811349010
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R ('frailtyHL'), while the real-world data examples together with an R package, 'frailtyHL' in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to researchers in medical and genetics fields, graduate students, and PhD (bio) statisticians. Codice articolo 9789811349010
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. reprint edition. 300 pages. 9.25x6.10x0.68 inches. In Stock. Codice articolo __9811349010
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 300. Codice articolo 26376148621
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 300. Codice articolo 18376148615
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 300. Codice articolo 370945362
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. reprint edition. 300 pages. 9.25x6.10x0.68 inches. In Stock. Codice articolo zk9811349010
Quantità: 1 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: New. New. book. Codice articolo ERICA80098113490106
Quantità: 1 disponibili