Articoli correlati a Optimization Algorithms for Hand Posture Estimation

Optimization Algorithms for Hand Posture Estimation - Rilegato

 
9789811397561: Optimization Algorithms for Hand Posture Estimation

Sinossi

This book reviews the literature on hand posture estimation using generative methods, identifying the current gaps, such as sensitivity to hand shapes, sensitivity to a good initial posture, difficult hand posture recovery in cases of loss in tracking, and lack of addressing multiple objectives to maximize accuracy and minimize computational cost. To fill these gaps, it proposes a new 3D hand model that combines the best features of the current 3D hand models in the literature. It also discusses the development of a hand shape optimization technique. To find the global optimum for the single-objective problem formulated, it improves and applies particle swarm optimization (PSO), one of the most highly regarded optimization algorithms and one that is used successfully in both science and industry. After formulating the problem, multi-objective particle swarm optimization (MOPSO) is employed to estimate the Pareto optimal front as the solution for this bi-objective problem. The book also demonstrates the effectiveness of the improved PSO in hand posture recovery in cases of tracking loss. Lastly, the book examines the formulation of hand posture estimation as a bi-objective problem for the first time.


The case studies included feature 50 hand postures extracted from five standard datasets, and were used to benchmark the proposed 3D hand model, hand shape optimization, and hand posture recovery.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Dr. Shahrzad Saremi is a lecturer at Griffith College, Griffith University, Australia. She received her BA in Information Technology from the Malaysian Multi Media University and M.Sc in Interaction Design from the University of Queensland. Dr. Saremi has published more than 20 articles in high-impact journals. Her main research interests include machine learning, optimization, human-computer interaction, augmented reality and gesture detection.

Dr. Seyedali Mirjalili is a lecturer at Griffith College, Griffith University and internationally recognized for his advances in nature-inspired Artificial Intelligence (AI) techniques. He is the author of five books, 100 journal articles, 20 conference papers, and 20 book chapters. With over 10000 citations and H-index of 40, he is one of the most influential AI researchers in the world.  From Google Scholar metrics, he is globally the 3rd most cited researcher in Engineering Optimisation and Robust Optimisation using AI techniques. He has been the keynote speaker of several international conferences and is serving as an associate editor of top AI journals including Applied Soft Computing, Applied Intelligence, IEEE Access, Advances in Engineering Software, and Applied Intelligence.

Dalla quarta di copertina

This book reviews the literature on hand posture estimation using generative methods, identifying the current gaps, such as sensitivity to hand shapes, sensitivity to a good initial posture, difficult hand posture recovery in cases of loss in tracking, and lack of addressing multiple objectives to maximize accuracy and minimize computational cost. To fill these gaps, it proposes a new 3D hand model that combines the best features of the current 3D hand models in the literature. It also discusses the development of a hand shape optimization technique. To find the global optimum for the single-objective problem formulated, it improves and applies particle swarm optimization (PSO), one of the most highly regarded optimization algorithms and one that is used successfully in both science and industry. After formulating the problem, multi-objective particle swarm optimization (MOPSO) is employed to estimate the Pareto optimal front as the solution for this bi-objective problem. The book also demonstrates the effectiveness of the improved PSO in hand posture recovery in cases of tracking loss. Lastly, the book examines the formulation of hand posture estimation as a bi-objective problem for the first time.


The case studies included feature 50 hand postures extracted from five standard datasets, and were used to benchmark the proposed 3D hand model, hand shape optimization, and hand posture recovery.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Zustand: Hervorragend | Sprache...
Visualizza questo articolo

EUR 105,00 per la spedizione da Germania a U.S.A.

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9789811397592: Optimisation Algorithms for Hand Posture Estimation

Edizione in evidenza

ISBN 10:  9811397597 ISBN 13:  9789811397592
Casa editrice: Springer Nature, 2020
Brossura

Risultati della ricerca per Optimization Algorithms for Hand Posture Estimation

Foto dell'editore

0
Editore: Springer, 2019
ISBN 10: 9811397562 ISBN 13: 9789811397561
Nuovo Rilegato

Da: Basi6 International, Irving, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEOCT25-269333

Contatta il venditore

Compra nuovo

EUR 108,82
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Seyedali Mirjalili
ISBN 10: 9811397562 ISBN 13: 9789811397561
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book reviews the literature on hand posture estimation using generative methods, identifying the current gaps, such as sensitivity to hand shapes, sensitivity to a good initial posture, difficult hand posture recovery in cases of loss in tracking, and lack of addressing multiple objectives to maximize accuracy and minimize computational cost. To fill these gaps, it proposes a new 3D hand model that combines the best features of the current 3D hand models in the literature. It also discusses the development of a hand shape optimization technique. To find the global optimum for the single-objective problem formulated, it improves and applies particle swarm optimization (PSO), one of the most highly regarded optimization algorithms and one that is used successfully in both science and industry. After formulating the problem, multi-objective particle swarm optimization (MOPSO) is employed to estimate the Pareto optimal front as the solution for this bi-objective problem. The book also demonstrates the effectiveness of the improved PSO in hand posture recovery in cases of tracking loss. Lastly, the book examines the formulation of hand posture estimation as a bi-objective problem for the first time.The case studies included feature 50 hand postures extracted from five standard datasets, and were used to benchmark the proposed 3D hand model, hand shape optimization, and hand posture recovery. 224 pp. Englisch. Codice articolo 9789811397561

Contatta il venditore

Compra nuovo

EUR 128,39
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Shahrzad Saremi|Seyedali Mirjalili
Editore: Springer Nature Singapore, 2019
ISBN 10: 9811397562 ISBN 13: 9789811397561
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Proposes a new 3D hand model with simple shapes and low computational complexityDemonstrates improved particle swarm optimization and multi-objective particle swarm optimizationBased on case studies of 50 hand posturesProposes a . Codice articolo 297504176

Contatta il venditore

Compra nuovo

EUR 109,83
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Seyedali Mirjalili, Shahrzad Saremi
Editore: Springer Nature Singapore, 2019
ISBN 10: 9811397562 ISBN 13: 9789811397561
Antico o usato Rilegato

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Codice articolo 34997352/1

Contatta il venditore

Compra usato

EUR 67,89
Convertire valuta
Spese di spedizione: EUR 105,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Seyedali Mirjalili
ISBN 10: 9811397562 ISBN 13: 9789811397561
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -This book reviews the literature on hand posture estimation using generative methods, identifying the current gaps, such as sensitivity to hand shapes, sensitivity to a good initial posture, difficult hand posture recovery in cases of loss in tracking, and lack of addressing multiple objectives to maximize accuracy and minimize computational cost. To fill these gaps, it proposes a new 3D hand model that combines the best features of the current 3D hand models in the literature. It also discusses the development of a hand shape optimization technique. To find the global optimum for the single-objective problem formulated, it improves and applies particle swarm optimization (PSO), one of the most highly regarded optimization algorithms and one that is used successfully in both science and industry. After formulating the problem, multi-objective particle swarm optimization (MOPSO) is employed to estimate the Pareto optimal front as the solution for this bi-objective problem. The book alsodemonstrates the effectiveness of the improved PSO in hand posture recovery in cases of tracking loss. Lastly, the book examines the formulation of hand posture estimation as a bi-objective problem for the first time.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 224 pp. Englisch. Codice articolo 9789811397561

Contatta il venditore

Compra nuovo

EUR 128,39
Convertire valuta
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Seyedali Mirjalili
ISBN 10: 9811397562 ISBN 13: 9789811397561
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book reviews the literature on hand posture estimation using generative methods, identifying the current gaps, such as sensitivity to hand shapes, sensitivity to a good initial posture, difficult hand posture recovery in cases of loss in tracking, and lack of addressing multiple objectives to maximize accuracy and minimize computational cost. To fill these gaps, it proposes a new 3D hand model that combines the best features of the current 3D hand models in the literature. It also discusses the development of a hand shape optimization technique. To find the global optimum for the single-objective problem formulated, it improves and applies particle swarm optimization (PSO), one of the most highly regarded optimization algorithms and one that is used successfully in both science and industry. After formulating the problem, multi-objective particle swarm optimization (MOPSO) is employed to estimate the Pareto optimal front as the solution for this bi-objective problem. The book alsodemonstrates the effectiveness of the improved PSO in hand posture recovery in cases of tracking loss. Lastly, the book examines the formulation of hand posture estimation as a bi-objective problem for the first time.The case studies included feature 50 hand postures extracted from five standard datasets, and were used to benchmark the proposed 3D hand model, hand shape optimization, and hand posture recovery. Codice articolo 9789811397561

Contatta il venditore

Compra nuovo

EUR 132,72
Convertire valuta
Spese di spedizione: EUR 62,74
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Saremi, Shahrzad, Mirjalili, Seyedali
Editore: Springer, 2019
ISBN 10: 9811397562 ISBN 13: 9789811397561
Nuovo Rilegato

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: New. New. book. Codice articolo ERICA79798113975626

Contatta il venditore

Compra nuovo

EUR 195,90
Convertire valuta
Spese di spedizione: EUR 28,82
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Saremi, Shahrzad (Author)/ Mirjalili, Seyedali (Author)
Editore: Springer, 2019
ISBN 10: 9811397562 ISBN 13: 9789811397561
Nuovo Rilegato

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Brand New. 205 pages. 9.25x6.10x0.59 inches. In Stock. Codice articolo zk9811397562

Contatta il venditore

Compra nuovo

EUR 204,07
Convertire valuta
Spese di spedizione: EUR 28,82
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello