Articoli correlati a Algorithms in Machine Learning Paradigms

Algorithms in Machine Learning Paradigms ISBN 13: 9789811510427

Algorithms in Machine Learning Paradigms - Brossura

 
9789811510427: Algorithms in Machine Learning Paradigms

Al momento non sono disponibili copie per questo codice ISBN.

Sinossi

Chapter 1. Development of Trapezoidal Hesitant-Intuitionistic Fuzzy Prioritized Operators based on Einstein Operations with their Application to Multi-Criteria Group Decision Making.- Chapter 2. Graph-based Information-Theoretic Approach for Unsupervised Feature Selection.- Chapter 3. Fact based Expert System for supplier selection with ERP data.- Chapter 4. Handling Seasonal Pattern and Prediction using Fuzzy Time Series Model.- Chapter 5. Automatic Classification of Fruits and Vegetables: A Texture-based Approach.- Chapter 6. Deep Learning based Early Sign Detection Model for Proliferative Diabetic Retinopathy in Neovascularization at the Disc.- Chapter 7. A Linear Regression Based Resource Utilization Prediction Policy For Live Migration in Cloud Computing.-  Chapter 8. Tracking changing human emotions from facial image sequence by landmark triangulation: A incircle-circumcircle duo approach.- Chapter 9. Recognizing Human Emotions from Facial Images by Landmark Triangulation: A Combined Circumcenter-Incenter-Centroid Trio Feature Based Method.- Chapter 10. Stable neighbor nodes prediction with multivariate analysis in mobile ad hoc network using RNN model.- Chapter 11. A New Approach for Optimizing Initial Parameters of Lorenz Attractor and its application in PRNG.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

(nessuna copia disponibile)

Cerca:



Inserisci un desiderata

Non riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!

Inserisci un desiderata

Altre edizioni note dello stesso titolo

9789811510403: Algorithms in Machine Learning Paradigms: 870

Edizione in evidenza

ISBN 10:  9811510407 ISBN 13:  9789811510403
Casa editrice: Springer Nature, 2020
Rilegato