Articoli correlati a Large-scale Graph Analysis: System, Algorithm and Optimizati...

Large-scale Graph Analysis: System, Algorithm and Optimization - Brossura

 
9789811539305: Large-scale Graph Analysis: System, Algorithm and Optimization

Sinossi

This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms – the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms.

This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology fordesigning efficient large-scale graph algorithms.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Yingxia Shao is a Research Associate Professor at the School of Computer Science, Beijing University of Posts and Telecommunications. His research interests include large-scale graph analysis, knowledge graph management and representation, and parallel computing. He obtained his PhD from Peking University in 2016, under the supervision of Prof. Bin Cui. He worked with Prof. Lei Chen as a visiting scholar at HKUST in 2013 and 2014. He has served in the Technical Program Committee of various international conferences including VLDB, KDD, AAAI, IJCAI, DASFAA, BigData, APWeb-WAIM and MDM. He is serving as a reviewer of international journals including VLDBJ, DAPD, WWWJ, DSE. He was selected for a Google PhD Fellowship (2014), MSRA Fellowship (2014), PhD National Scholarship of MOE China (2014), ACM SIGMOD China Doctoral Dissertation Award (2017). He is currently a member of the ACM, IEEE, CCF, and China  Database technical committee.

Bin Cui is a Professor at the School of EECS and Director of the Institute of Network Computing and Information Systems, at Peking University. He obtained his B.Sc. from Xi'an Jiaotong University (Pilot Class) in 1996, and Ph.D. from National University of Singapore in 2004 respectively. From 2004 to 2006, he worked as a Research Fellow in Singapore-MIT Alliance. His research interests include database system architectures, query and index techniques, and big data management and mining. He has served in the Technical Program Committee of various international conferences including SIGMOD, VLDB, ICDE and KDD, and as Vice PC Chair of ICDE 2011, Demo Co-Chair of ICDE 2014, Area Chair of VLDB 2014, PC Co-Chair of APWeb 2015 and WAIM 2016. He is currently serving as a Trustee Board Member of VLDB Endowment, , is on the the Editorial Board of VLDB Journal, Distributed and Parallel Databases Journal, and Information Systems, and was formerly an associate editorof IEEE Transactions on Knowledge and Data Engineering (TKDE, 2009-2013). He was selected for a Microsoft Young Professorship award (MSRA 2008), CCF Young Scientist award (2009), Second Prize of Natural Science Award of MOE China (2014), and appointed a Cheung Kong distinguished Professor by the MOE in 2016. He is a senior member of the IEEE, member of the ACM and distinguished member of the  CCF.

Lei Chen received the BS degree in computer science and engineering from Tianjin University, Tianjin, China, in 1994, the MA degree from Asian Institute of Technology, Bangkok, Thailand, in 1997, and the Ph.D. degree in computer science from the University of Waterloo, Canada, in 2005. He is currently a Full Professor at the Department of Computer Science and Engineering, Hong Kong University of Science and Technology. His research interests include crowdsourcing, social media analysis, probabilistic and uncertain databases, and privacy-preserved data publishing.The system developed by his team won the excellent demonstration award at the VLDB 2014. He was selected for  the SIGMOD Test-of-Time Award in 2015. He is PC Track chairs for SIGMOD 2014, VLDB 2014, ICDE 2012, CIKM 2012, SIGMM 2011. He has served as PC members for SIGMOD, VLDB, ICDE, SIGMM, and WWW. Currently, he serves as PC co-chair for VLDB 2019, Editor-in-Chief of VLDB Journal and associate editor-in-chief of IEEE Transactions on Data and Knowledge Engineering. He is an IEEE fellow, a member of the VLDB endowment and an ACM Distinguished Scientist.


Dalla quarta di copertina

This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms – the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms.

This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology fordesigning efficient large-scale graph algorithms.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 2,26 per la spedizione in U.S.A.

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9789811539275: Large-scale Graph Analysis: System, Algorithm and Optimization

Edizione in evidenza

ISBN 10:  9811539278 ISBN 13:  9789811539275
Casa editrice: Springer-Nature New York Inc, 2020
Rilegato

Risultati della ricerca per Large-scale Graph Analysis: System, Algorithm and Optimizati...

Immagini fornite dal venditore

Shao, Yingxia; Cui, Bin; Chen, Lei
Editore: Springer, 2021
ISBN 10: 9811539308 ISBN 13: 9789811539305
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 43437404-n

Contatta il venditore

Compra nuovo

EUR 154,73
Convertire valuta
Spese di spedizione: EUR 2,26
In U.S.A.
Destinazione, tempi e costi

Quantità: 15 disponibili

Aggiungi al carrello

Foto dell'editore

Yingxia Shao
ISBN 10: 9811539308 ISBN 13: 9789811539305
Nuovo Paperback

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms.This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology fordesigning efficient large-scale graph algorithms. This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9789811539305

Contatta il venditore

Compra nuovo

EUR 157,05
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Shao, Yingxia; Cui, Bin; Chen, Lei
Editore: Springer, 2021
ISBN 10: 9811539308 ISBN 13: 9789811539305
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Apr0412070088834

Contatta il venditore

Compra nuovo

EUR 157,40
Convertire valuta
Spese di spedizione: EUR 3,42
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Shao, Yingxia; Cui, Bin; Chen, Lei
Editore: Springer, 2021
ISBN 10: 9811539308 ISBN 13: 9789811539305
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9789811539305_new

Contatta il venditore

Compra nuovo

EUR 147,27
Convertire valuta
Spese di spedizione: EUR 13,80
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yingxia Shao
ISBN 10: 9811539308 ISBN 13: 9789811539305
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms - the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms.This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology fordesigning efficient large-scale graph algorithms. 160 pp. Englisch. Codice articolo 9789811539305

Contatta il venditore

Compra nuovo

EUR 160,49
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Shao, Yingxia|Cui, Bin|Chen, Lei
ISBN 10: 9811539308 ISBN 13: 9789811539305
Nuovo Kartoniert / Broschiert
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. Codice articolo 477964087

Contatta il venditore

Compra nuovo

EUR 136,16
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Shao, Yingxia; Cui, Bin; Chen, Lei
Editore: Springer, 2021
ISBN 10: 9811539308 ISBN 13: 9789811539305
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 43437404

Contatta il venditore

Compra usato

EUR 184,72
Convertire valuta
Spese di spedizione: EUR 2,26
In U.S.A.
Destinazione, tempi e costi

Quantità: 15 disponibili

Aggiungi al carrello

Foto dell'editore

Shao, Yingxia; Cui, Bin; Chen, Lei
Editore: Springer, 2021
ISBN 10: 9811539308 ISBN 13: 9789811539305
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 1st ed. 2020 edition NO-PA16APR2015-KAP. Codice articolo 26388462328

Contatta il venditore

Compra nuovo

EUR 188,34
Convertire valuta
Spese di spedizione: EUR 3,42
In U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Shao, Yingxia; Cui, Bin; Chen, Lei
Editore: Springer, 2021
ISBN 10: 9811539308 ISBN 13: 9789811539305
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9789811539305

Contatta il venditore

Compra nuovo

EUR 194,40
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Shao, Yingxia; Cui, Bin; Chen, Lei
Editore: Springer, 2021
ISBN 10: 9811539308 ISBN 13: 9789811539305
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo 391170343

Contatta il venditore

Compra nuovo

EUR 200,54
Convertire valuta
Spese di spedizione: EUR 7,49
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Vedi altre 7 copie di questo libro

Vedi tutti i risultati per questo libro