Articoli correlati a Alternating Direction Method of Multipliers for Machine...

Alternating Direction Method of Multipliers for Machine Learning - Brossura

 
9789811698415: Alternating Direction Method of Multipliers for Machine Learning

Al momento non sono disponibili copie per questo codice ISBN.

Sinossi

Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

(nessuna copia disponibile)

Cerca:



Inserisci un desiderata

Non riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!

Inserisci un desiderata

Altre edizioni note dello stesso titolo

9789811698392: Alternating Direction Method of Multipliers for Machine Learning

Edizione in evidenza

ISBN 10:  9811698392 ISBN 13:  9789811698392
Casa editrice: Springer-Nature New York Inc, 2022
Rilegato