<div>The present monograph further develops the study, via the techniques of combinatorial anabelian geometry, of the profinite fundamental groups of <i>configuration spaces</i> associated to <i>hyperbolic curves</i> over algebraically closed fields of characteristic zero.</div><div><br></div><div>The starting point of the theory of the present monograph is a <i>combinatorial anabelian</i> result which allows one to reduce issues concerning the anabelian geometry of configuration spaces to issues concerning the anabelian geometry of hyperbolic curves, as well as to give <i>purely group-theoretic characterizations</i> of the <i>cuspidal inertia subgroups</i> of one-dimensional subquotients of the profinite fundamental group of a configuration space.</div><div><br></div><div>We then turn to the study of <i>tripod synchronization</i>, i.e., of the phenomenon that an outer automorphism of the profinite fundamental group of a log configuration space associated to a stable log curve induces the <i>same</i> outer automorphism on certain subquotients of such a fundamental group determined by <i>tripods</i> [i.e., copies of the projective line minus three points]. The theory of tripod synchronization shows that such outer automorphisms exhibit somewhat different behavior from the behavior that occurs in the case of discrete fundamental groups and, moreover, may be applied to obtain various strong results concerning <i>profinite Dehn multi-twists</i>.</div><br><div>In the final portion of the monograph, we develop a theory of <i>localizability</i>, on the dual graph of a stable log curve, for the condition that an outer automorphism of the profinite fundamental group of the stable log curve <i>lift</i> to an outer automorphism of the profinite fundamental group of a corresponding log configuration space. This localizability is combined with the theory of tripod synchronization to construct a purely combinatorial analogue of the natural outer surjection from the étale fundamental group of the moduli stack of hyperbolic curves over the field of rational numbers to the absolute Galois group of the field of rational numbers.</div><div><br></div>
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
The present monograph further develops the study, via the techniques of combinatorial anabelian geometry, of the profinite fundamental groups of <i>configuration spaces</i> associated to <i>hyperbolic curves</i> over algebraically closed fields of characteristic zero.<div><br></div><div>The starting point of the theory of the present monograph is a <i>combinatorial anabelian</i> result which allows one to reduce issues concerning the anabelian geometry of configuration spaces to issues concerning the anabelian geometry of hyperbolic curves, as well as to give <i>purely group-theoretic characterizations</i> of the <i>cuspidal inertia subgroups</i> of one-dimensional subquotients of the profinite fundamental group of a configuration space.</div><div><br></div><div>We then turn to the study of <i>tripod synchronization</i>, i.e., of the phenomenon that an outer automorphism of the profinite fundamental group of a log configuration space associated to a stable log curve induces the <i>same</i> outer automorphism on certain subquotients of such a fundamental group determined by <i>tripods</i> [i.e., copies of the projective line minus three points]. The theory of tripod synchronization shows that such outer automorphisms exhibit somewhat different behavior from the behavior that occurs in the case of discrete fundamental groups and, moreover, may be applied to obtain various strong results concerning <i>profinite Dehn multi-twists</i>.</div><div><br></div><div>In the final portion of the monograph, we develop a theory of <i>localizability</i>, on the dual graph of a stable log curve, for the condition that an outer automorphism of the profinite fundamental group of the stable log curve <i>lift</i> to an outer automorphism of the profinite fundamental group of a corresponding log configuration space. This localizability is combined with the theory of tripod synchronization to construct a purely combinatorial analogue of the natural outer surjection from the étale fundamental group of the moduli stack of hyperbolic curves over the field of rational numbers to the absolute Galois group of the field of rational numbers.</div><div><br></div>
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,80 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 10,75 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9789811910951_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 44503420-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 44503420
Quantità: Più di 20 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Gut. Zustand: Gut - Gebrauchs- und Lagerspuren. Außen: angestoßen. | Seiten: 176 | Sprache: Englisch | Produktart: Bücher. Codice articolo 38803306/3
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 44503420
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9789811910951
Quantità: 10 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26396049450
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18396049440
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 401376245
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 44503420-n
Quantità: Più di 20 disponibili