Articoli correlati a Privacy Preservation in IoT: Machine Learning Approaches:...

Privacy Preservation in IoT: Machine Learning Approaches: A Comprehensive Survey and Use Cases - Brossura

 
9789811917967: Privacy Preservation in IoT: Machine Learning Approaches: A Comprehensive Survey and Use Cases

Sinossi

This book aims to sort out the clear logic of the development of machine learning-driven privacy preservation in IoTs, including the advantages and disadvantages, as well as the future directions in this under-explored domain. In big data era, an increasingly massive volume of data is generated and transmitted in Internet of Things (IoTs), which poses great threats to privacy protection. Motivated by this, an emerging research topic, machine learning-driven privacy preservation, is fast booming to address various and diverse demands of IoTs. However, there is no existing literature discussion on this topic in a systematically manner.

The issues of existing privacy protection methods (differential privacy, clustering, anonymity, etc.) for IoTs, such as low data utility, high communication overload, and unbalanced trade-off, are identified to the necessity of machine learning-driven privacy preservation. Besides, the leading and emerging attacks pose further threats to privacy protection in this scenario. To mitigate the negative impact, machine learning-driven privacy preservation methods for IoTs are discussed in detail on both the advantages and flaws, which is followed by potentially promising research directions.

Readers may trace timely contributions on machine learning-driven privacy preservation in IoTs. The advances cover different applications, such as cyber-physical systems, fog computing, and location-based services. This book will be of interest to forthcoming scientists, policymakers, researchers, and postgraduates.


Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Dr. Youyang Qu received his Ph.D. degree in Information Technology at School of Information Technology, Deakin University, in 2019, and he is currently serving as Research Fellow in Deakin University. His research interests focus on dealing with security and customizable privacy issues in blockchain, social networks, machine learning, and IoT. He has over 30 publications on top journals and magazines such as IEEE IOTJ, IEEE TII, and IEEE Wireless Communication. He has served as TPC Member for IEEE flagship conferences including IEEE ICC and IEEE Globecom. He is also Publicity Chair of SPDE 2020.

 

Dr. Longxiang Gao received a Ph.D. in Computer Science from Deakin University, Australia. He is currently Senior Lecturer at the School of Information Technology, Deakin University. Before joining Deakin University, he was Post-doctoral Research Fellow at IBM Research and Development Australia. His research interests include data processing, mobile social networks, fog computing, and network security. He has over 80 publications, including patents, monographs, book chapters, and journal and conference papers. Some of his publications have been published in the top venues, such as IEEE TMC, IEEE IoT, IEEE TDSC, and IEEE TVT. He received the 2012 Chinese Government Award for Outstanding Students Abroad (Ranked No.1 in Victoria and Tasmania consular districts). Dr. Gao is Senior Member of IEEE and is active in IEEE Communication Society. He has served as TPC Co-Chair, Publicity Co-Chair, Organization Chair, and TPC Member for many international conferences.

 

Professor Shui Yu is currently Full Professor of School of Computer Science, University of Technology Sydney, Australia. Dr. Yu's research interest includes security and privacy, networking, big data, and mathematical modelling. He has published two monographs and edited two books, more than 200 technical papers, including top journals and top conferences, such as IEEE TPDS, TC,TIFS, TMC, TKDE, TETC, ToN, and INFOCOM. Dr. Yu initiated the research field of networking for big data in 2013. Dr. Yu actively serves his research communities in various roles. He is currently serving the editorial boards of IEEE Communications Surveys and Tutorials, IEEE Communications Magazine, IEEE Internet of Things Journal, IEEE Communications Letters, IEEE Access, and IEEE Transactions on Computational Social Systems. He has served many international conferences as Member of organizing committee, such as Publication Chair for IEEE Globecom 2015, IEEE INFOCOM 2016 and 2017, TPC Chair for IEEE BigDataService 2015, and General Chair for ACSW 2017. Dr Yu is Final Voting Member for a few NSF China programs in 2017. He is Senior Member of IEEE, Member of AAAS and ACM, Vice Chair of Technical Committee on Big Data of IEEE Communication Society, and Distinguished Lecturer of IEEE Communication Society.

 

Professor Yong Xiang received the Ph.D. degree in electrical and electronic engineering from the University of Melbourne, Australia. He is currently Professor and Director of the Artificial Intelligence and Image Processing Research Cluster with the School of Information Technology, Deakin University, Australia. His research interests include information security and privacy, multimedia (speech/image/video) processing, wireless sensor networks, massive MIMO, and bio-medical signal processing. He has authored more than 110 refereed journal and conference papers in these areas. He is Associate Editor of the IEEE SIGNAL PROCESSING LETTERS and the IEEE ACCESS. He has served as Program Chair, TPC Chair, Symposium Chair, and Session Chair for a number of international conferences.


Dalla quarta di copertina


Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer
  • Data di pubblicazione2022
  • ISBN 10 9811917965
  • ISBN 13 9789811917967
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero edizione1
  • Numero di pagine132
  • Contatto del produttorenon disponibile

Compra usato

Zustand: Hervorragend | Seiten:...
Visualizza questo articolo

EUR 6,90 per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Privacy Preservation in IoT: Machine Learning Approaches:...

Foto dell'editore

Youyang Qu, Yong Xiang, Shui Yu, Longxiang Gao
Editore: Springer Nature Singapore, 2022
ISBN 10: 9811917965 ISBN 13: 9789811917967
Antico o usato Brossura

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Hervorragend. Zustand: Hervorragend | Seiten: 132 | Sprache: Englisch | Produktart: Bücher. Codice articolo 38686912/1

Contatta il venditore

Compra usato

EUR 29,69
Convertire valuta
Spese di spedizione: EUR 6,90
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Qu, Youyang|Gao, Longxiang|Yu, Shui|Xiang, Yong
ISBN 10: 9811917965 ISBN 13: 9789811917967
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book aims to sort out the clear logic of the development of machine learning-driven privacy preservation in IoTs, including the advantages and disadvantages, as well as the future directions in this under-explored domain. In big data era, an increas. Codice articolo 571810588

Contatta il venditore

Compra nuovo

EUR 52,76
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Longxiang Gao
ISBN 10: 9811917965 ISBN 13: 9789811917967
Nuovo PAP

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo S0-9789811917967

Contatta il venditore

Compra nuovo

EUR 61,99
Convertire valuta
Spese di spedizione: EUR 5,98
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Youyang Qu
ISBN 10: 9811917965 ISBN 13: 9789811917967
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book aims to sort out the clear logic of the development of machine learning-driven privacy preservation in IoTs, including the advantages and disadvantages, as well as the future directions in this under-explored domain. In big data era, an increasingly massive volume of data is generated and transmitted in Internet of Things (IoTs), which poses great threats to privacy protection. Motivated by this, an emerging research topic, machine learning-driven privacy preservation, is fast booming to address various and diverse demands of IoTs. However, there is no existing literature discussion on this topic in a systematically manner.The issues of existing privacy protection methods (differential privacy, clustering, anonymity, etc.) for IoTs, such as low data utility, high communication overload, and unbalanced trade-off, are identified to the necessity of machine learning-driven privacy preservation. Besides, the leading and emerging attacks pose further threats to privacy protection in this scenario. To mitigate the negative impact, machine learning-driven privacy preservation methods for IoTs are discussed in detail on both the advantages and flaws, which is followed by potentially promising research directions.Readers may trace timely contributions on machine learning-driven privacy preservation in IoTs. The advances cover different applications, such as cyber-physical systems, fog computing, and location-based services. This book will be of interest to forthcoming scientists, policymakers, researchers, and postgraduates. 132 pp. Englisch. Codice articolo 9789811917967

Contatta il venditore

Compra nuovo

EUR 58,84
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Qu, Youyang; Gao, Longxiang; Yu, Shui; Xiang, Yong
Editore: Springer, 2022
ISBN 10: 9811917965 ISBN 13: 9789811917967
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9789811917967_new

Contatta il venditore

Compra nuovo

EUR 62,09
Convertire valuta
Spese di spedizione: EUR 10,66
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Qu, Youyang/ Gao, Longxiang/ Yu, Shui/ Xiang, Yong
ISBN 10: 9811917965 ISBN 13: 9789811917967
Nuovo Paperback
Print on Demand

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 130 pages. 9.25x6.10x0.28 inches. In Stock. This item is printed on demand. Codice articolo __9811917965

Contatta il venditore

Compra nuovo

EUR 61,08
Convertire valuta
Spese di spedizione: EUR 11,86
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Youyang Qu
ISBN 10: 9811917965 ISBN 13: 9789811917967
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book aims to sort out the clear logic of the development of machine learning-driven privacy preservation in IoTs, including the advantages and disadvantages, as well as the future directions in this under-explored domain. In big data era, an increasingly massive volume of data is generated and transmitted in Internet of Things (IoTs), which poses great threats to privacy protection. Motivated by this, an emerging research topic, machine learning-driven privacy preservation, is fast booming to address various and diverse demands of IoTs. However, there is no existing literature discussion on this topic in a systematically manner.The issues of existing privacy protection methods (differential privacy, clustering, anonymity, etc.) for IoTs, such as low data utility, high communication overload, and unbalanced trade-off, are identified to the necessity of machine learning-driven privacy preservation. Besides, the leading and emerging attacks pose further threats to privacy protection in this scenario. To mitigate the negative impact, machine learning-driven privacy preservation methods for IoTs are discussed in detail on both the advantages and flaws, which is followed by potentially promising research directions.Readers may trace timely contributions on machine learning-driven privacy preservation in IoTs. The advances cover different applications, such as cyber-physical systems, fog computing, and location-based services. This book will be of interest to forthcoming scientists, policymakers, researchers, and postgraduates.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 132 pp. Englisch. Codice articolo 9789811917967

Contatta il venditore

Compra nuovo

EUR 58,84
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Qu, Youyang; Gao, Longxiang; Yu, Shui; Xiang, Yong
Editore: Springer, 2022
ISBN 10: 9811917965 ISBN 13: 9789811917967
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44468965-n

Contatta il venditore

Compra nuovo

EUR 59,19
Convertire valuta
Spese di spedizione: EUR 17,49
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Youyang Qu
ISBN 10: 9811917965 ISBN 13: 9789811917967
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book aims to sort out the clear logic of the development of machine learning-driven privacy preservation in IoTs, including the advantages and disadvantages, as well as the future directions in this under-explored domain. In big data era, an increasingly massive volume of data is generated and transmitted in Internet of Things (IoTs), which poses great threats to privacy protection. Motivated by this, an emerging research topic, machine learning-driven privacy preservation, is fast booming to address various and diverse demands of IoTs. However, there is no existing literature discussion on this topic in a systematically manner.The issues of existing privacy protection methods (differential privacy, clustering, anonymity, etc.) for IoTs, such as low data utility, high communication overload, and unbalanced trade-off, are identified to the necessity of machine learning-driven privacy preservation. Besides, the leading and emerging attacks pose further threats to privacy protection in this scenario. To mitigate the negative impact, machine learning-driven privacy preservation methods for IoTs are discussed in detail on both the advantages and flaws, which is followed by potentially promising research directions.Readers may trace timely contributions on machine learning-driven privacy preservation in IoTs. The advances cover different applications, such as cyber-physical systems, fog computing, and location-based services. This book will be of interest to forthcoming scientists, policymakers, researchers, and postgraduates. Codice articolo 9789811917967

Contatta il venditore

Compra nuovo

EUR 63,83
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Qu, Youyang; Gao, Longxiang; Yu, Shui; Xiang, Yong
Editore: Springer, 2022
ISBN 10: 9811917965 ISBN 13: 9789811917967
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44468965-n

Contatta il venditore

Compra nuovo

EUR 61,98
Convertire valuta
Spese di spedizione: EUR 17,79
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 7 copie di questo libro

Vedi tutti i risultati per questo libro