Articoli correlati a Principal Component Analysis and Randomness Test for...

Principal Component Analysis and Randomness Test for Big Data Analysis: Practical Applications of RMT-Based Technique - Brossura

 
9789811939686: Principal Component Analysis and Randomness Test for Big Data Analysis: Practical Applications of RMT-Based Technique

Sinossi

This book presents the novel approach of analyzing large-sized rectangular-shaped numerical data (so-called big data). The essence of this approach is to grasp the "meaning" of the data instantly, without getting into the details of individual data. Unlike conventional approaches of principal component analysis, randomness tests, and visualization methods, the authors' approach has the benefits of universality and simplicity of data analysis, regardless of data types, structures, or specific field of science.

First, mathematical preparation is described. The RMT-PCA and the RMT-test utilize the cross-correlation matrix of time series, XXT, where X represents a rectangular matrix of N rows and L columns and XT represents the transverse matrix of X. Because C is symmetric, namely, CT, it can be converted to a diagonal matrix of eigenvalues by a similarity transformation SCS-1 = SCST using an orthogonal matrix S. When N is significantly large, the histogram of the eigenvalue distribution can be compared to the theoretical formula derived in the context of the random matrix theory (RMT, in abbreviation).

Then the RMT-PCA applied to high-frequency stock prices in Japanese and American markets is dealt with. This approach proves its effectiveness in extracting "trendy" business sectors of the financial market over the prescribed time scale. In this case, X consists of N stock- prices of length L, and the correlation matrix C is an N by N square matrix, whose element at the i-th row and j-th column is the inner product of the price time series of the length L of the i-th stock and the j-th stock of the equal length L.

Next, the RMT-test is applied to measure randomness of various random number generators, including algorithmically generated random numbers and physically generated random numbers.

The book concludes by demonstrating two applications of the RMT-test: (1) a comparison of hash functions, and (2) stock prediction by means of randomness, including a new index of off-randomness related to market decline.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

EUR 10,32 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9789811939662: Principal Component Analysis and Randomness Test for Big Data Analysis: Practical Applications of Rmt-based Technique: 25

Edizione in evidenza

ISBN 10:  9811939667 ISBN 13:  9789811939662
Casa editrice: Springer Nature, 2023
Rilegato

Risultati della ricerca per Principal Component Analysis and Randomness Test for...

Foto dell'editore

Tanaka-Yamawaki, Mieko; Ikura, Yumihiko
Editore: Springer, 2023
ISBN 10: 9811939683 ISBN 13: 9789811939686
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9789811939686_new

Contatta il venditore

Compra nuovo

EUR 53,94
Convertire valuta
Spese di spedizione: EUR 10,32
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello